张之栋 1谢品华 2,3李昂 4秦敏 4[ ... ]胡峰 1
作者单位
摘要
1 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026 中国科学院安徽光学与精密机械研究所, 环境光学与技术重点实验室, 安徽 合肥 230031
2 张之栋
3 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026 中国科学院安徽光学与精密机械研究所, 环境光学与技术重点实验室, 安徽 合肥 230031中国科学院城市环境研究所中科院城市大气环境卓越中心, 福建 厦门 361021
4 中国科学院安徽光学与精密机械研究所, 环境光学与技术重点实验室, 安徽 合肥 230031
5 安徽大学物质科学与信息技术研究院, 安徽 合肥 230039
二氧化硫(SO2)和氮氧化物(NOx)作为大气中重要的一次排放物, 人为活动造成SO2, NOx的过度排放会对生态环境和人体健康产生巨大危害, 2018年环境保护部就规定了“2+26”城市需要执行大气污染物的特别排放限值, 如: 燃煤锅炉排放限值规定的二氧化硫、 氮氧化物均为200 μg·m-3, 因此了解这些城市中SO2和NOx的分布与排放对大气污染防控管制具有重要意义。 唐山市作为“2+26”城市中大气污染最为严重的重工业城市之一, 近年来实施了多项大气污染防治措施, 但空气质量问题仍然严峻。 2021年2月26至3月1日, 使用基于车载差分吸收光谱技术的移动污染气体监测系统对于唐山市区开展了走航观测实验, 获取了走航路径上NOx和SO2的空间立体分布以及走航区域的排放通量。 实验结果表明唐山市一环存在多处NO2高值区域, 均位于车辆较为集中的立交和路口处。 工业园的走航中部分企业存在高NO2、 SO2的排放, 且获取的NO2和SO2VCD均值较高, 分别是一环的1.75~1.99倍和2.21~3.44倍。 结合垂直柱浓度SO2/NO2的比值以及近地面浓度CO/NO2的比值, 并用Pearson相关系数确定SO2和NO2柱浓度以及NO2近地面浓度和柱浓度之间的相关性, 进一步分析不同区域的主要污染源, 结果表明, 一环走航获取的SO2/NO2最低为0.42, CO/NO2最高为10.88, NO2地表与柱浓度之间的相关性r达到0.56, 3月1日丰南工业园区走航中, 获取的SO2/NO2最高为0.81, CO/NO2最低为7.13, SO2与NO2VCD之间有良好的相关性r为0.787, 唐山市一环区域大气污染物以车辆交通尾气排放为主, 丰南工业园区大气污染物来源以工业生产过程中高架点源(烟囱)释放的大量NO2和SO2为主。
空间分布 排放通量 污染源 走航观测 差分吸收光谱 Distribution Emission flux Pollution source Cruise observation Differential optical absorption spectroscopy 
光谱学与光谱分析
2023, 43(5): 1651
张华荣 1,2谢品华 1,2,3,*徐晋 1,**吕寅生 1,2[ ... ]张之栋 1,2
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所,安徽 合肥 230031
2 中国科学技术大学,安徽 合肥 230026
3 中国科学院大学,北京 100049
针对快速、高分辨获取CO2排放量并有效识别CO2排放源分布的需求,集成了近红外差分吸收光谱遥测系统,研究了反演CO2浓度信息的近红外差分光学吸收光谱算法,并结合通量算法估算了典型排放源的排放通量。分别选取电厂和合肥市科学岛为观测点,开展了对典型点排放源和复杂背景下面排放源的CO2浓度分布研究,分析了参考光谱的选择对于结果反演的影响,选择背景光谱为参考谱,获取了CO2柱浓度信息,柱浓度反演误差可达到0.79%,并利用双三次插值算法得到了高空间分辨的CO2柱浓度二维浓度分布结果,结合浓度分布结果和观测参数计算了电厂CO2的排放通量为1925 kg,其中测量距离估算误差为主要误差源。初步开展了对合肥市边界层CO2浓度分布的研究,获得了合肥市大气边界层郊区、电厂区和城市区的CO2浓度分布特点,该研究对下一步开展城市温室气体排放的评估具有重要意义,为城市碳排放遥测提供了一种可靠的技术和方法。
光谱学 近红外差分吸收光谱 光学遥测 二氧化碳浓度分布 排放通量 
光学学报
2023, 43(24): 2430004
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 安徽新华学院城市建设学院, 安徽 合肥 230088
发光二极管(LED)发射光谱窄限制了差分吸收光谱反演波段, 难以实现多种气体的同时测量。 采用光纤束组合两种紫外LED形成组合式LED宽带光源, 应用于DOAS系统实现大气SO2和O3的同步探测。 光谱分析显示两种LED灯谱在280~295 nm处发生叠加, 275~301 nm有明显的灯结构。 该灯结构会随着双峰光强比增加而增强, 同时向短波方向漂移。 实际测量时, 外界环境改变会引起两个LED光谱各自独立变化, 且二者发射光谱波段内大气消光存在差异。 这将导致大气吸收光谱的双峰光强比不断变化, 且与灯谱不一致, 二者相除难以抵消灯结构。 光谱反演结果显示宽带光源灯结构为参考谱参与拟合无法较好地扣除干扰。 为扣除测量时LED光谱独立变化对光谱反演的影响, 提出采用各LED独立灯结构作为参考谱参与拟合, 结果显示SO2和O3拟合残差分别由1%、 6‰降低至4‰左右, 扣除效果较好。 该方法与避开干扰结构相比, 拓宽了SO2和O3的反演波段, SO2和O3吸收峰分别增加了1.75倍和1倍, 平均拟合误差分别降低了67.5%和37.3%, 测量精度明显提高。 SO2和O3测量结果与同时段同地区的传统氙灯长光程DOAS系统比较, 结果显示二者保持较高一致性, 相关性系数R高于95%。 结果表明DOAS反演时组合式LED宽带光源灯结构可以通过各LED独立的灯结构来拟合扣除。
差分吸收光谱技术 组合式LED宽带光源 光谱结构扣除 同步探测 Differential optical absorption spectroscopy Combined LED broadband light source Spectral structure removal Simultaneous 
光谱学与光谱分析
2023, 43(11): 3339
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室,安徽 合肥 230031
2 中国科学技术大学,安徽 合肥 230026
利用差分吸收光谱技术(DOAS)反演了我国第二代星载大气痕量气体差分吸收光谱仪(EMI-Ⅱ)的SO2斜柱浓度(SCD),并通过辐射传输模型SCIATRAN建立了SO2大气质量因子(AMF)的查找表,经去条带处理后获得SO2的垂直柱浓度(VCD)。以2021年10月底拉帕尔马岛火山区域为研究对象,基于EMI-Ⅱ数据反演的SO2 VCD与国外同类型载荷TROPOMI的结果一致,相关性系数R分别为0.89、0.90、0.92。此外,还将汤加海底火山的SO2反演结果与TROPOMI的监测数据进行对比,结果表明,EMI-Ⅱ观测结果与TROPOMI一致,都观测到此次SO2羽流的自东向西的传输过程。结合风场数据,计算了2022年1月14—15日汤加海底火山爆发产生的SO2排放通量,结果表明,利用EMI-Ⅱ载荷反演的火山区域SO2 VCD可靠性高,可实现全球火山爆发预警。
大气光学 差分吸收光谱 EMI-Ⅱ SO2垂直柱浓度 汤加海底火山 
光学学报
2023, 43(6): 0601006
邓勤 *
作者单位
摘要
Chongqing Research Institute Co.,Ltd., China Coal Technology and Engineering Group, Chongqing 400039, China
为实现机动车尾气高精度监测,提出一种高精度宽量程NO测量方法。针对尾气中SO2及NO在紫外波段存在吸收峰重合从而无法直接进行单组分气体反演问题,首先用紫外差分光学吸收光谱(ultra-violet differential optical absorption spectroscopy, UV-DOAS)法计算得到混合气体在NO敏感波段(200 nm~230 nm)的差分光学密度(differential optical density, DOD),并引入自适应干扰对消技术以实现混合气体DOD的快速分离,最终利用最小二乘法对分离出的NO进行浓度反演。该方法可实现100×10?6~3 000×10?6范围内NO浓度(气体的体积分数)快速反演,经测试,在100×10?6~200×10?6浓度范围内反演相对误差绝对值小于10%,在300×10?6~3000×10?6浓度范围内,反演相对误差绝对值小于5%。该方法具有测量量程大、速度快的特点,可满足汽车尾气中3 000×10?6范围内NO浓度测量要求。
紫外差分光学吸收光谱 差分光学密度 自适应干扰对消 最小二乘法 混合气体浓度反演 递归最小二乘法 ultraviolet differential optical absorption spectroscopy differential optical density adaptive interference cancellation least square method mixed-gas concentration inversion recursive least square method 
应用光学
2022, 43(6): 1054
田鑫 1,3任博 3,5谢品华 1,3,4,5牟福生 2[ ... ]田伟 1
作者单位
摘要
1 安徽大学物质科学与信息技术研究院,安徽 合肥 230601
2 淮北师范大学污染物敏感材料与环境修复安徽省重点实验室,安徽 淮北 235003
3 中国科学院安徽光学精密机械研究所!环境光学与技术重点实验室,安徽 合肥 230031
4 中国科学院区域大气环境研究卓越创新中心,福建 厦门 361021
5 中国科学技术大学环境科学与光电技术学院,安徽 合肥 230025
HONO作为大气OH自由基的前体物和重要贡献源, 影响着大气中污染物的氧化降解, 控制着对流层大气的自净能力, 对灰霾和光化学烟雾形成起到重要作用, 同时受污染排放特征、 垂直传输和混合、 非均相反应和大气光氧化等影响, HONO具有明显的垂直分布特征, 因此探究大气中HONO的垂直分布特征对于了解大气灰霾和光化学污染的形成和控制都十分重要。 MAX-DOAS作为一种被动遥感技术, 能够快速有效地获取大气中污染物的立体分布特征。 采用MAX-DOAS仪器对合肥市科学岛2017年12月冬季大气HONO和NO2进行了立体探测, 通过基于最优估算的气溶胶和痕量气体廓线反演算法PriAM获取了两种气体的垂直分布特征。 研究结果表明, 在观测期间NO2在近地面10 m内体积混合比(VMR)和垂直柱浓度(VCD)的范围分别在0.51×1011~20.5×1011 molecules·cm-3和6.0×1015~5.5×1016 molecules·cm-2, 在垂直方向上其浓度主要集中在1 km内, 且在近地面浓度混合均匀。 HONO的VMR和VCD分别在0.03×1010~5.1×1010 molecules·cm-3和3.5×1014~7.0×1015 molecules·cm-2之间, 浓度高值出现在100 m内, 浓度随高度的升高而明显下降。 通过对HONO和NO2的对比发现, HONO/NO2比值在0.17%~16.0%(VMR)和1.0%~25.0%(VCD)之间, 表明研究期间HONO主要来自于NO2的转化。 对冬季一次典型污染过程(2017.12.26—2017.12.31)分析, HONO/NO2的比值大于5%, 且HONO的浓度值升高(大于0.26×1011 molecules·cm-3), 表明污染条件下NO2向HONO的转化作用变强。 结合风场信息研究发现, 污染期间研究区域的NO2和HONO浓度受到合肥市城区、 安徽北部和西北部地区传输的影响。
多轴差分吸收光谱 二氧化氮 气态亚硝酸 垂直分布 反演算法 Multi-Axis differential optical absorption spectroscopy NO2 HONO Vertical distribution Inversion algorithm 
光谱学与光谱分析
2022, 42(7): 2039
作者单位
摘要
中国科学院合肥物质科学研究院, 安徽光学精密机械研究所, 安徽 合肥 230031
成像差分吸收光谱技术是成像光谱技术和差分吸收光谱技术的结合, 能够采集图谱合一的数据立方, 并通过光谱反演得到痕量气体浓度的二维分布信息。 地基IDOAS仪器通过安装平台的水平旋转实现摆扫成像, 可用于识别污染气体的排放源和监测气体的扩散情况。 然而和所有的成像光谱技术相类似, 地基IDOAS也容易出现条带噪声的问题, 会产生相应的伪结构, 影响后续的信息提取和数据分析。 目前星载和机载IDOAS中常见的条带噪声去除算法有均匀区域校正法、 传输模型模拟法、 傅里叶变换频域滤波法、 多项式拟合法等, 应用到地基仪器中均存在不适用的问题。 介绍了一种基于权重变分模型的条带噪声去除算法, 该算法首先通过分块自适应阈值分割得出表征遮挡区域的权重矩阵, 然后利用条带噪声的方向性和稀疏性建立各向异性的变分模型, 最后通过交替方向乘子算法迭代求解。 为检验去条带算法的可靠性, 使用稀疏、 稠密、 周期、 随机、 整行、 部分、 单行、 多行等多种模拟噪声进行了性能测试。 测试结果证明权重变分算法能够有效去除各种常见的条带噪声, 目视效果和四种全参考评价指标均有良好的表现。 地基IDOAS于2018年夏季在四川乐山进行了外场实验, 实验中仪器的水平扫描范围覆盖360°全方位角, 扫描间隔为1°, 垂直方向仪器同时采集0°~30°仰角内的光谱。 仪器的积分时间设置为500 ms, 每组全景扫描的工作时间约为15 min。 利用DOAS技术对采集到的太阳散射光谱进行反演, 最终得到的NO2和SO2气体的二维浓度分布图的像素大小为360×48。 从反演结果来看, 条带噪声对不同时间和不同气体的观测结果的影响大小均不同。 经权重变分算法处理后, 多组NO2和SO2浓度分布中的条带噪声情况得到极大的改善, 并且没有出现过度平滑的情况。 结果表明, 该算法适用于地基IDOAS数据的条带噪声去除。
成像差分吸收光谱 条带噪声 变分法 光学遥感 Imaging differential optical absorption spectroscopy Stripe noise Variation Optical remote sensing 
光谱学与光谱分析
2022, 42(2): 627
作者单位
摘要
上海大学 特种光纤与光接入网重点实验室,上海 200444
氨气是大气中常见的污染气体之一,其浓度检测结果易受到环境温度的影响,为准确检测氨气浓度,必须对温度的影响进行修正。该文将遗传算法与差分吸收光谱技术相结合,对氨气检测过程中温度的影响进行研究。基于紫外差分吸收光谱技术,搭建了296 K~328 K温度下的氨气检测系统,采用遗传算法对氨气检测结果进行温度补偿。结果表明,通过实验获得的温度补偿模型可有效消除温度对氨气检测的非线性影响,从而提高检测精度。在328 K温度下,44×10−6氨气检测结果的误差降低了26.97%,随着温度变化,线性相关系数均在0.998 16以上;6×10−6氨气在温度补偿前后系统的检测限分别为0.198×10−6和0.278×10−6
遗传算法 紫外差分吸收光谱技术 氨气检测 温度补偿 检测限 genetic algorithm ultraviolet differential optical absorption spectroscopy ammonia detection temperature compensation detection limit 
应用光学
2021, 42(6): 1067
叶凯迪 1,*秦敏 1方武 1段俊 1[ ... ]徐文斌 4
作者单位
摘要
1 中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
4 光学辐射重点实验室, 北京 100854
取代基通过取代苯环上的H原子形成不同苯系物(苯、 甲苯、 二甲苯等), 其共有结构苯环上的不固定π键电子受到激发, 使得苯系物在紫外波段240~280 nm具有明显的特征吸收结构, 鉴于此大气中的苯及相关的苯系物可以通过差分光学吸收光谱(DOAS)方法来进行定量, 但采用该波段测量需要考虑以下问题: 首先是氧气(O2)的吸收干扰问题, 苯(C6H6)在该波段的吸收截面与O2在243~287 nm Herzzberg带相互重叠, 且O2的特征光谱结构随O2的浓度不同而变化, 导致O2的吸收光学密度与O2的浓度不成线性关系。 其次, 苯系物结构上的相似性使其在紫外波段的特征吸收结构差别较小并且相互重叠, 从而对C6H6的拟合产生干扰。 此外, 除了O2和苯系物以外, 还有臭氧(O3)、 二氧化硫(SO2)等干扰。 C6H6在195~208 nm的深紫外波段具有较大的吸收截面(2.417×10-17 cm2·molecule-1), 为240~260 nm处截面大小(2.6×10-18 cm2·molecule-1)的9倍左右, 针对C6H6在深紫外195~208 nm波段的吸收特征, 开展便携式DOAS定量方法研究, 采用该波段进行C6H6的光谱定量分析并应用到实际的外场观测。 通过建立C6H6与干扰气体SO2, 氨(NH3), 二硫化碳(CS2)和一氧化氮(NO)的差分吸收截面的二维相关性矩阵, 获取C6H6光谱定量的最优反演波段。 通过开展实验室条件下C6H6, SO2和NH3不同浓度配比的混气实验对195~208 nm波段反演C6H6的效果进行评估。 实验结果显示, 采用195~208 nm波段进行光谱反演的探测限为17.6 μg·m-3, 光谱反演浓度与理论浓度的相对测量误差均小于5%且RSD(相对标准偏差)小于3%, 同时与240~260 nm波段反演结果进行对比, 相对误差小于5%。 在外场实际情况下, 利用便携式DOAS系统获取190~300 nm的大气测量光谱, 通过DOAS方法解析并结合GPS信息, 获得了某化工园区C6H6的污染浓度分布, 实验结果表明采用195~208 nm深紫外波段同样能适用于对C6H6的光谱定量, 与240~260 nm波段反演结果进行对比, 二者的相关性达到了0.98且相对误差小于10%。
差分光学吸收光谱  深紫外 Differential optical absorption spectroscopy DOAS Benzene Deep ultraviolet DOAS 
光谱学与光谱分析
2021, 41(10): 3007
贾桂红 1,1; 2; *;张建军 1郑海明 2
作者单位
摘要
1 河北工业大学机械工程学院, 天津 300401
2 华北电力大学能源动力与机械工程学院, 河北 保定 071003
利用差分吸收光谱法(DOAS)可以实现污染气体的在线监测。 为了提高监测精度, 通常利用傅里叶变换滤波法(FFT)处理差分吸收光谱数据, 但是因其频率分辨率的限制, 影响其幅值精度, 导致气体浓度的测量误差较大。 提出了一种将FFT和FT相结合的差分光谱数据处理方法(FFT+FT), 首先对差分吸收光谱数据做FFT变换, 得到其全景谱, 再对峰值点附近的频谱用改进的连续FT进行细化, 提高特征吸收频段的分辨率, 对幅值误差进行补偿, 从而提高气体浓度在线监测的精度。 实验配制了不同浓度的SO2和NO2气体, 当细化倍数为15时, SO2和NO2气体的最大测量误差不超过3.68%和3.17%, 相对于FFT法, 平均误差分别降低了1.82%和1.45%; 相对于传统的多项式拟合法, 平均误差分别降低了14.9%和1.80%; 对恒定浓度的SO2和NO2气体分别进行了多次测量, 验证了FFT+FT方法的稳定性。 分析了细化倍数对测量精度的影响, 当细化倍数小于15时, 浓度测量误差随着细化倍数的增加而降低; 当细化倍数从15增加到20时, 误差反而逐渐变大, 在大于20以后, 误差出现波动, 且都大于细化倍数为15时的测量误差。 由于细化倍数太大, 使谱线过于密集, 找到频谱序列最大值的概率降低了, 因此在有噪声的情况下采用该法进行频谱校正时, 会出现细化倍数加大而测量精度反而降低的现象。 确定了最优细化倍数, 在确保测量精度前提下, 使频谱细化的计算量最小, 满足DOAS法实时在线监测气体浓度的要求。
差分吸收光谱法 频谱细化 连续细化傅里叶变换分析(FFT+FT) Differential optical absorption spectroscopy Spectrum zoom Fast Fourier transformation and fourer transformation 
光谱学与光谱分析
2021, 41(7): 2116

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!