作者单位
摘要
河南科技大学物理工程学院,河南 洛阳 471023
利用束腰半径不同的奇模和偶模因斯高斯光束同轴叠加,产生了一种双层花状光学涡旋晶格,通过实验与数值模拟对所提出的双层花状光学涡旋晶格进行分析研究。结果表明:由束腰半径不同的奇模和偶模因斯高斯光束叠加而成的光学涡旋晶格中的涡旋呈单层或双层分布,且不同层涡旋点的拓扑荷值大小相等,符号相反;当奇偶模因斯高斯光束之间的束腰半径差距逐渐减小,涡旋分布由双层变为单层;此外,可以通过改变奇偶模因斯高斯光束之间的相位差,实现涡旋符号的调控。该研究结果极大地丰富了光学涡旋晶格的空间模式分布,在微粒操纵领域有着潜在应用。
物理光学 因斯高斯光束 光学涡旋晶格 微粒操纵 
光学学报
2023, 43(1): 0126001
作者单位
摘要
1 河海大学 机电工程学院,江苏常州23022
2 苏州大学附属第三医院 妇产科,江苏常州13000
为实现生物微粒/细胞的精确操控,提出了一种非对称截面螺旋流道结构的惯性微流控芯片。基于仿真和实验的方法,对不同尺寸微粒在微流道中的惯性聚焦行为进行了研究。设计了一种“L”形截面的螺旋流道,采用仿真软件COMSOL研究微流道中的二次流场及微粒的运动轨迹。使用UV激光切割与等离子清洗键合的工艺制作芯片样件,采用高速摄像机和荧光显微镜分别拍摄6,10和15 μm粒子在微流道中不同流量时的运动轨迹。最后,对粒子运动图片进行堆叠分析,研究微粒的惯性聚焦迁移机理。结果表明:“L”形截面中产生了两对强度不同的非对称二次流场,使得10 μm和15 μm粒子在微流道外圈实现了强聚焦,而6 μm粒子实现了粗聚焦。该研究表明利用非对称二次流可以调节微粒的聚焦位置,为微粒和细胞的精准操控提供新的思路。
微流控 非对称二次流 惯性聚焦 微粒操控 激光加工 microfluidics asymmetric flow inertial focusing particle manipulation UV laser cutting 
光学 精密工程
2022, 30(3): 310
作者单位
摘要
1 河南科技大学物理工程学院, 河南 洛阳 471023
2 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
3 河南科技大学化工与制药学院, 河南 洛阳 471023
多平面波干涉(MPWI)是产生光学涡旋晶格(OVL)的一种经典方式。通过定义波矢空间坐标系,提出了一种基于MPWI的OVL调控方法,模拟生成了四个平面波和五个平面波干涉产生的OVL,计算了其梯度力和能流分布,分析了其在微粒操纵领域中的应用。然后,通过调控其部分波矢大小和旋转波矢角度,得到了更加丰富灵活的光场分布。最终,通过分析其梯度力和能流分布,发现该调控方法可以定制适合粒子操纵的特殊光场。该研究丰富了基于MPWI的OVL的空间模式,为OVL的应用提供了新思路。
物理光学 多平面波干涉 光学涡旋晶格 微粒操纵 
光学学报
2021, 41(21): 2126001
作者单位
摘要
上海理工大学 上海市现代光学系统重点实验室, 上海 200093
为提高粒子操控的灵活性和精度,一种基于拉盖尔高斯光束的可控螺旋干涉模式被提出。通过理论分析两束拉盖尔高斯光束同轴叠加光场,给出了不同参数的变化对干涉光场强度分布的影响。通过仿真模拟,研究参数变化对场强结构的调控作用。结果表明,通过改变两束拉盖尔高斯光束的拓扑电荷数可以实现干涉模式光场强度极大值的数量和分布的动态调整,增加了对粒子操控的灵活性和可控性,为提高光束微粒操控的精度的提升提供了可能。
拉盖尔高斯光束 螺旋干涉 拓扑电荷数 粒子控制 Laguerre-Gaussian beam spiral interference topological charge number particle manipulation 
光学仪器
2018, 40(5): 66
作者单位
摘要
1 河南科技大学物理工程学院, 河南 洛阳 471023
2 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
3 广东工业大学物理与光电工程学院, 广东 广州 510006
提出了一种基于奇偶模初始相位差因子调控的新型Ince-Gaussian(IG)光束, 即PIG(Ince-Gaussian beam with phase difference)光束。对传统IG光束偶模施加具有初始相位差φ的e指数相位因子, 将偶模与奇模进行线性叠加后得到了PIG光束。在其他参数相同的条件下, 重点研究了初始相位差调控因子对PIG光束空间模式的调控特性。数值模拟和实验结果表明: 当参数φ在0到π区间上连续取值时, 可实现正负涡旋PIG光束的连续变换; 当φ=π/2时, 中间状态涡旋消失; 调节φ使其为π的整数倍, 可以实现正负涡旋模式的跳变切换; 当调节φ为π的半整数倍时, 该光束可实现光瓣在椭圆轨迹上的精确位移控制。PIG光束为微粒操纵及光束微雕刻等领域提供了额外的调控自由度。
物理光学 光学涡旋 因斯-高斯模式 自由调控技术 微粒操纵 
光学学报
2017, 37(6): 0626002
作者单位
摘要
1 河南科技大学物理工程学院, 河南 洛阳 471023
2 河南科技大学化工与制药学院, 河南 洛阳 471023
利用涡旋光束与锥透镜透射率函数设计相位掩模板,采用平面光照射写入相位掩模板的空间光调制器(SLM),则在SLM的傅里叶平面上产生了完美涡旋光束,解决了傅里叶平面0级和±1级光谱重叠的问题。提出了一种完美涡旋光束的空间自由调控技术,通过实验分析,明确了空间调控位移与调控因子间的函数关系,调控精度达到了2.25 μm。通过在线调节锥透镜的锥角参数,实现了完美涡旋光束中心亮环半径的自由调控,并得到光束中心亮环半径与锥角的二次函数关系。将波长为532 nm和632.8 nm入射光产生的完美涡旋光束作对比,结果表明,当入射波长较长时,仍可得到较小半径的完美涡旋光束。该研究为完美涡旋光束在微粒操纵、光学信息编码、光学测量及基于轨道角动量的光纤通信等领域的应用提供了新思路。
物理光学 光学涡旋光束 完美涡旋光束 自由调控 微粒操纵 
光学学报
2016, 36(10): 1026018

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!