作者单位
摘要
西北农林科技大学机械与电子工程学院, 陕西 杨凌 712100
植物非生物胁迫是指对植物产生不利影响的非生物因素, 非生物胁迫威胁植物发芽、 生长、 发育和繁殖, 是阻碍农作物高效栽培和农业可持续发展的主要因素。 植物胁迫精准管理和抗逆植物育种是缓解和解决非生物胁迫的有效途径, 其中植物表型分析是一个不可或缺的环节, 但是传统滞后的如人工、 破坏式表型测量方法很难满足高通量表型分析的需求, 制约着植物非生物逆境治理的精度和现代植物育种的效率。 高通量植物表型分析技术旨在实现植物复杂性状的快速、 自动、 无损地获取与分析, 能实时原位监测植物受胁迫状态与程度, 指导胁迫治理措施和资源精准投入, 可以为优良抗逆植物品种高通量筛选鉴定提供解决方案、 能为植物抗逆基因解析与定位、 植物遗传变异分析等提供大数据支撑。 由于成像光谱技术能够实时、 非接触、 高效地测量植物结构形态、 生理生化等多样化的表型, 在高通量植物表型分析中表现出良好的潜力, 近年来在植物精准种植和现代植物育种中得到广泛研究与应用。 主要阐述可见光成像(RGB Imaging)、 多光谱成像(MSI)、 高光谱成像(HSI)、 叶绿素荧光成像(ChlFI)、 多光谱荧光成像(MFI)、 热红外成像(TIRI)高通量表型分析技术在植物非生物胁迫表型分析中的研究进展以及评估分析其发展趋势; 首先简单介绍了不同成像光谱的技术特点以及在植物表型分析中的应用差异和高通量分析流程; 其次总结了近年来基于成像光谱技术高通量分析植物非生物胁迫表型的部分研究和应用, 介绍范围从植物胁迫监测、 抗逆植物品种筛选鉴定、 植物遗传分析3个方面出发, 主要涉及植物干旱、 温度、 盐害、 养分胁迫以及其他非生物逆境。 最后探讨了上述成像光谱技术在植物非生物胁迫表型高通量分析的机遇和其面临的挑战。
成像光谱 非生物胁迫 高通量表型分析 精准管理 植物育种 Imaging spectroscopy Abiotic stress High-throughput plant phenotyping Precision farming Plant breeding 
光谱学与光谱分析
2020, 40(11): 3365
作者单位
摘要
北京大学地球与空间科学学院, 遥感与地理信息系统研究所, 北京 100871
表型分析对于理解植物基因型与环境之间的关系非常重要, 开发高效且成本低的相关技术是精准农业等领域的一项典型需求。 其中, 代表性的RGB-D设备Kinect已用于植物表型分析, 但其应用潜力尚未被充分挖掘。 本文首先梳理比较了Kinect表征三维结构的三种原理方式, 即点云基于深度图像(DI)生成, 通过运动恢复结构(SfM)从彩色图像获得, 以及合并DI和SfM点云生成融合数据(MD), 并以FARO X330激光扫描仪获取的基准数据评估三种方式的性能。 以植物玉簪为例的分析结果表明, 对叶面积的估算DI点云的准确度最高, 对叶片圆形度和偏心率的反演MD点云表现最佳, 对叶倾角的反演SfM点云的性能最好。 三种方式的结果差异源于它们表征不同结构的表现不同, 对于叶面积的反演, SfM表征叶片相对不完整, 而MD重建叶片的边缘存在不平滑的现象, 导致两者精度不足; 对于表征叶片的几何特征, 通过合并DI和SfM数据生成的MD点云实现了信息增强的效果, 使得其表现优于DI和SfM点云; 叶倾角对深度测量的准确性更敏感, 由于Kinect测量深度过程中通常存在误差, 导致DI和MD点云反演精度偏低, 而SfM点云仅通过彩色图像生成, 因此其表现出反演叶倾角的最佳性能。 性能比较与原因分析表明, 三种方式对不同的结构特征有不同的适用空间, 它们的集成有助于提升Kinect用于植物表型分析的整体性能, 由此形成一种基于Kinect的移动表型高效分析技术; 此外, 提出的叶片几何描绘(LGD)模型可较好拟合叶片轮廓, 有助于恢复部分被遮挡叶片的几何形态。 提出了一种基于Kinect的低成本但高效的移动型三维植物结构表型分析技术, 这对于促进作物监控、农业增产等有基础技术意义。
植物表型分析 点云 结构参数提取 plant phenotyping Point cloud Structural parameter extraction Kinect Kinect LiDAR LiDAR 
光谱学与光谱分析
2020, 40(8): 2352
岑海燕 1,2,*姚洁妮 1,2翁海勇 1,2徐海霞 1,2[ ... ]何勇 1,2
作者单位
摘要
1 浙江大学生物系统工程与食品科学学院, 浙江 杭州 310058
2 农业农村部光谱检测重点实验室, 浙江 杭州 310058
作物优良品种选育是实现作物优质高产的关键。 现代育种方法需要获取植株的大量表型信息, 最终选育出性状稳定的优良品种。 近年来, 高通量植物表型分析技术因其快速、 无损、 高效等优势, 为筛选优良作物品种提供了技术保障, 已成为农学、 工程、 计算机科学等多学科交叉研究的热点。 其中, 叶绿素荧光技术作为植物光合作用的探针, 是研究植物逆境胁迫表型的有力工具之一, 能够实现植物生物与非生物胁迫的高效分析, 加快作物优良性状的筛选。 该文旨在阐述叶绿素荧光技术的研究进展和发展趋势, 主要介绍了叶绿素荧光技术的基本原理和成像系统、 叶绿素荧光参数的分析和处理方法, 总结了在植物表型分析研究中的应用情况, 探讨了该技术目前存在的问题和改进的方法, 进一步展望了叶绿素荧光技术在植物表型分析中的应用前景。
叶绿素荧光技术 植物表型分析 生物胁迫 非生物胁迫 作物育种 Chlorophyll fluorescence technique Plant phenotyping Biotic stress Abiotic stress Plant breeding 
光谱学与光谱分析
2018, 38(12): 3773
Author Affiliations
Abstract
1 Britton Chance Center for Biomedical Photonics Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology 1037 Luoyu Rd., Wuhan 430074, P. R. China
2 National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research Huazhong Agricultural University Wuhan 430070, P. R. China
3 College of Engineering Huazhong Agricultural University Wuhan 430070, P. R. China
4 MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River College of Plant Science and Technology Huazhong Agricultural University Wuhan 430070, P. R. China
Total green leaf area (GLA) is an important trait for agronomic studies. However, existing methods for estimating the GLA of individual rice plants are destructive and labor-intensive. A nondestructive method for estimating the total GLA of individual rice plants based on multiangle color images is presented. Using projected areas of the plant in images, linear, quadratic, exponential and power regression models for estimating total GLA were evaluated. Tests demonstrated that the side-view projected area had a stronger relationship with the actual total leaf area than the top-projected area. And power models fit better than other models. In addition, the use of multiple side-view images was an efficient method for reducing the estimation error. The inclusion of the top-view projected area as a second predictor provided only a slight improvement of the total leaf area estimation. When the projected areas from multi-angle images were used, the estimated leaf area (ELA) using the power model and the actual leaf area had a high correlation coefficient (R2 > 0:98), and the mean absolute percentage error (MAPE) was about 6%. The method was capable of estimating the total leaf area in a nondestructive, accurate and efficient manner, and it may be used for monitoring rice plant growth.
Agri-photonics image processing plant phenotyping regression model visible light imaging 
Journal of Innovative Optical Health Sciences
2015, 8(2): 1550002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!