Author Affiliations
Abstract
1 RMIT Centre for Additive Manufacture, School of Engineering, RMIT University, Melbourne, Australia
2 Physical Sciences Department, Peter MacCallum Cancer Centre, Melbourne, Australia
3 ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, Australia
4 Centre for Medical Radiation Physics, University of Wollongong, Wollongong Australia
The additive manufacturing (AM) process plays an important role in enabling cross-disciplinary research in engineering and personalised medicine. Commercially available clinical tools currently utilised in radiotherapy are typically based on traditional manufacturing processes, often leading to non-conformal geometries, time-consuming manufacturing process and high costs. An emerging application explores the design and development of patient-specific clinical tools using AM to optimise treatment outcomes among cancer patients receiving radiation therapy. In this review, we: 1)? highlight the key advantages of AM in radiotherapy where rapid prototyping allows for patient-specific manufacture 2) explore common clinical workflows involving radiotherapy tools such as bolus, compensators, anthropomorphic phantoms, immobilisers, and brachytherapy moulds; 3) investigate how current AM processes are exploited by researchers to achieve patient tissuelike imaging and dose attenuations. Finally, significant AM research opportunities in this space are highlighted for their future advancements in radiotherapy for diagnostic and clinical research applications.
additive manufacturing radiotherapy tools dosimetry EBRT patient-specific cancer treatment quality assurance 
International Journal of Extreme Manufacturing
2020, 2(1): 012003
作者单位
摘要
江苏大学 机械工程学院, 镇江 212013
为了研究不同激光功率密度下空气中冲击波幅值和飞行时间分别与工件中冲击波幅值和残余压应力的变化关系,采用工件为45#钢、铝箔为吸收层、水为约束层、声发射传感器和聚偏氟乙烯压电膜传感器同时对空气和工件中的激光诱导等离子体冲击波进行测量。结果表明,随激光功率密度的增加,空气中冲击波飞行时间非线性的减少,空气和工件内冲击波幅值非线性的增加,工件中残余压应力值接近饱和。进行多项式拟合,获得了空气中冲击波幅值与工件内冲击波幅值、空气中冲击波飞行时间与工件内残余压应力的经验公式,为激光冲击强化质量评估提供一定的理论参考。
激光技术 激光冲击强化 质量评估 冲击波 幅值 飞行时间 laser technique laser shock processing quality assurance shock wave amplitude time of flight 
激光技术
2010, 34(5): 694

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!