作者单位
摘要
1 南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院,江苏 南京 210023
2 中国科学院上海光学精密机械研究所高功率激光单元技术实验室,上海 201800
3 国科大杭州高等研究院物理与光电工程学院,浙江 杭州 310024
稀土掺杂石英光纤具有物化性能稳定、机械强度高、易于系统集成等优点,是目前光纤激光器最核心的增益介质,但其稀土掺杂浓度一般较低(<2%)。利用溶胶凝胶法和高温烧结工艺制备了Tm3+掺杂浓度为8.29×1020 cm-3的高硅氧玻璃,并表征了其光谱性能。采用溶胶镀膜和二次熔融拉锥方法制备了芯径约为4 μm、外径为125 μm的石英光纤,其可与商用无源光纤进行熔接。利用全光纤化线性腔结构,以制备的不同长度掺Tm3+石英光纤作为增益介质,均可实现1947 nm激光输出,光信噪比约为70 dB;当光纤长度为4.6 cm时,斜率效率高达14.1%;同时搭建了掺铥光纤放大器,测得光纤小信号净增益系数为0.48 dB/cm。研究结果表明,该新型光纤制备方法可为高浓度掺铥石英光纤提供新途径,有望推动其在2.0 μm单频及高重频锁模光纤激光器中的应用。
激光器 光纤激光器 Tm3+高掺石英光纤 溶胶凝胶法 熔融拉锥 
光学学报
2023, 43(4): 0414001
作者单位
摘要
上海大学特种光纤与光接入网省部共建重点实验室, 上海 200072
利用改进化学气相沉积(MCVD)工艺结合原子层沉积(ALD)掺杂技术制备铋铒共掺石英光纤(BEDF), 对其进行熔融拉伸处理, 研究其近红外发光特性。实验结果表明, 随着拉伸长度增加, BEDF的透射谱强度下降, 同时, 在980 nm抽运光激发下, 铋活性中心(BACs)在940 nm和1100 nm波段处荧光的强度随着拉伸长度的增加而明显增强, 当拉伸长度为1.5 cm时, 分别增加8.2 dB和9.7 dB。经熔融拉伸处理后, 仅4.9 cm长的BEDF的荧光强度增强, 这可能是因铋离子的价态变化和铋活性中心浓度的下降所致。这对研究铋相关发光材料在近红外波段的发光机理, 提升发光中心的发光效率具有重要的意义。
光纤光学 光谱学 熔融拉伸处理 铋/铒共掺光纤 石英光纤 
中国激光
2018, 45(10): 1006004
钟年丙 1,2,*王永忠 1,2廖强 1,2朱恂 1,2陈蓉 1,2
作者单位
摘要
1 重庆大学 低品位能源利用及系统教育部重点实验室, 重庆 400030
2 重庆大学 工程热物理研究所, 重庆 400030
为了获得光滑的腐蚀光纤表面, 本文从光纤腐蚀的传质及动力学特性出发, 设计了一种流动腐蚀光纤装置。采用质量百分比浓度为12.5%的氢氟酸(HF)溶液, 研究了石英光纤的组成成分、腐蚀剂温度和流速对腐蚀速率以及腐蚀后光纤表面形貌的影响。实验结果及理论分析表明: 光纤腐蚀速率和表面粗糙度受化学反应速率和传质速率控制; 由于光纤纤芯与包层成分不同, 导致纤芯腐蚀速率高于包层腐蚀速率; 在静态腐蚀条件下, 腐蚀速率随温度呈非线性增长, 且腐蚀后光纤表面粗糙; 在流动腐蚀条件下, 光纤腐蚀速率提高, 并与温度呈线性关系, 腐蚀后光纤表面粗糙度随流速的增加呈现出先减小后增大的趋势; 在流速为0.75 L/min时, 获得了光滑的腐蚀光纤表面。
石英光纤 流动腐蚀 光滑表面 传质 动力学 silica optical fiber flow etching smooth surface mass-transfer dynamics 
光学 精密工程
2013, 21(8): 1966
钟年丙 1,2,*廖强 1,2朱恂 1,2王永忠 1,2陈蓉 1,2
作者单位
摘要
1 重庆大学 低品位能源利用及系统教育部重点实验室,重庆 400030
2 重庆大学 工程热物理研究所,重庆 400030
为了获得光滑的腐蚀光纤表面并精确管理光纤的腐蚀直径,采用自行设计的超声腐蚀系统,在质量百分比浓度为12.5%的氢氟酸(HF)溶液中研究了超声功率和腐蚀温度对石英光纤包层、纤芯腐蚀速率以及腐蚀后光纤表面形貌的影响。研究表明:在HF溶液中,超声扰动有利于提高光纤的腐蚀速率,光纤腐蚀速率与腐蚀时间呈非线性关系,腐蚀表面随着腐蚀的进行越来越粗糙。基于研究结果,进一步采用质量百分比浓度为12.5%的HF溶液和25% 的NH4OH溶液配制了缓冲氢氟酸(BHF)溶液,探讨了光纤腐蚀速率及表面形貌的变化,结果表明:在V (HF)∶V (NH4OH) = 2的BHF溶液中,当超声功率为165 W、腐蚀温度为40℃时,可获得光滑的腐蚀光纤表面和腐蚀速率与腐蚀时间的线性关系。
超声扰动 石英光纤 缓冲氢氟酸 表面形貌 线性控制 ultrasonic agitation silica optical fiber buffered HF acid surface morphology linear control 
光学 精密工程
2012, 20(5): 988
作者单位
摘要
1 电子工业部第四十六研究所 天津 300220
2 中国科学院西安光机所瞬态光学技术国家重点实验室 西安 710068
描述用液相掺杂技术研制掺Tm3+石英光纤并实现其相关参数的控制,并对掺Tm3+浓度及其测量方法进行了讨论。
掺Tm3+石英光纤 液相掺杂技术 相关参数控制 
中国激光
2000, 27(1): 33
作者单位
摘要
1 中国科学技术大学研究生院(北京)信息安全国家重点实验室, 北京 100039
2 华南师范大学量子电子学研究所, 广州 510631
严格求解含非线性延时修正光纤孤立子方程, 得到一类完全不同于光纤中已知的亮孤子和暗孤子的新型光学孤波解, 并讨论了其物理含义及在光纤实验中观察这种扭结孤波的可能性。
石英光纤 非线性延时 严格解 孤立波 
光学学报
1999, 19(6): 746
作者单位
摘要
东南大学电子工程系, 南京 210018
报道了采用预置法使石英光纤中产生二次谐波及由透射电子显微镜观察预置前后光纤内部物质结构变化的实验结果.发现石英光纤中存有少量晶体,正是它们在预置前后的结构变化导致了二次谐波的产生.
二次谐波产生 石英光纤 透射电镜 晶体 
光学学报
1994, 14(11): 1151
作者单位
摘要
中国科学院上海光机所, 上海 201800
报道了国产纯石英光纤弯曲特性的测量结果,得到了光纤的弯曲损耗与芯径、弯曲半径的关系曲线,并对测量结果进行理论分析。
纯石英光纤 弯曲传输效率 
中国激光
1994, 21(7): 571

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!