作者单位
摘要
1 枣庄学院 光电工程学院,山东 枣庄 277100
2 枣庄学院 信息科学与工程学院,山东 枣庄 277100
提出一种石墨烯-金属超材料复合太赫兹传感器,充分利用石墨烯能带Dirac点附近费米能级对样品的灵敏响应结合超材料表面强局域电场实现了对谷氨酸溶液浓度的多维超灵敏传感。实验结果表明,传感器在频率f =0.58 THz处存在一个明显的透射峰,且该透射峰幅值随谷氨酸溶液浓度的增加先升高后降低。若以透射峰幅值作为传感指标,器件能够探测到的最低浓度在10−1 fg/mL量级。另外,从传感器的透射波相位差-频率关系曲线中提取的斜率与浓度具有类线性关联,这意味着相位差信息也可以作为有效的传感指标。结合透射幅值和相位差两个传感指标,器件可以实现对谷氨酸溶液浓度的超灵敏精确检测。文中提出的器件为发展基于太赫兹超材料的超灵敏氨基酸传感器提供了帮助。
太赫兹超材料 传感器 石墨烯 多维超灵敏 terahertz metamaterials sensors graphene multi-dimension and ultra-sensitivity 
红外与激光工程
2023, 52(9): 20230045
作者单位
摘要
1 西南科技大学信息工程学院,四川 绵阳 621000
2 西南科技大学四川天府新区创新研究院,四川 成都 610299
提出一种顶层图案为圆环加双开口谐振环结构的吸收器,并通过神经网络实现太赫兹超材料吸收器结构参数的逆向设计。该神经网络由输入层、输出层和5层隐藏层构成,输入为所需吸收率和品质因子,根据电磁共振理论将3个结构参数设定为输出。仿真结果表明,该吸收器在1.192 THz频率处的吸收率可达99.99%,在1.22 THz频率处品质因子可达31.7,其吸收性能与目标性能的误差最小为0.9%。所提方法显著简化了吸收器的设计过程,为太赫兹超材料的快速发展提供可能。
材料 太赫兹超材料 吸收器 逆向设计 神经网络 
光学学报
2023, 43(13): 1316001
作者单位
摘要
中国计量大学光学与电子科技学院,浙江 杭州 310018
为了拓展超材料在太赫兹波段的生物传感应用,设计了一种双开口环结构的太赫兹超材料生物传感器,通过两个等效电容电感(LC)谐振实现了高折射率灵敏度传感。首先,使用有限积分技术(FIT)数值计算了该传感器的太赫兹光谱,并对其进行了结构尺寸优化。然后,在传感器表面放置了一层折射率可变的分析物,通过对不同透射光谱的计算分析,验证了该传感器具备161.06 GHz/RIU(RIU为折射率单位)的折射率灵敏度和1.98的品质因素(FOM)值。最后,采用传统光刻技术和剥离工艺在石英衬底上制作铜金属结构,制备了该传感器,利用其对牛血清白蛋白(BSA)溶液进行了实际测试,实验得到传感灵敏度为59.02 GHz/(ng·mm-2)和检测下限为0.004 mg/mL。
传感器 生物传感器 太赫兹超材料 双开口环结构 
光学学报
2023, 43(4): 0428002
Author Affiliations
Abstract
1 College of Computer, National University of Defense Technology, Changsha 410073, China
2 National Innovation Institute of Defense Technology, Beijing 100010, China
An active ultrafast formation and modulation of dual-band plasmon-induced transparency (PIT) effect is theoretically and experimentally studied in a novel metaphotonic device operating in the terahertz regime, for the first time, to the best of our knowledge. Specifically, we designed and fabricated a triatomic metamaterial hybridized with silicon islands following a newly proposed modulating mechanism. In this mechanism, a localized surface plasmon resonance is induced by the broken symmetry of a C2 structure, acting as the quasi-dark mode. Excited by exterior laser pumps, the photo-induced carriers in silicon promote the quasi-dark mode, which shields the near-field coupling between the dark mode and bright mode supported by the triatomic metamaterial, leading to the dynamical modulation of terahertz waves from individual-band into dual-band PIT effects, with a decay constant of 493 ps. Moreover, a remarkable slow light effect occurs in the modulating process, accompanied by the dual-transparent windows. The dynamical switching technique of the dual-band PIT effect introduced in this work highlights the potential usefulness of this metaphotonic device in optical information processing and communication, including multi-frequency filtering, tunable sensors, and optical storage.
all-optical switching terahertz metamaterials dual-band plasmon-induced transparency ultrafast modulation 
Chinese Optics Letters
2022, 20(1): 013701
作者单位
摘要
1 桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004
2 长沙学院电子与电气工程学院湖南省光电健康检测工程技术研究中心, 湖南 长沙 410022
设计了一种基于双椭圆结构的高品质因数(Q值)太赫兹(THz)超材料传感器,该传感器的每个单元均包含两个厚度为0.2 μm、位于聚合物基底上且互成一定角度的金属椭圆。用时域有限积分法对传感器的结构进行了优化,通过破坏面内反转对称性使金属椭圆阵列组成的超表面激发垂直入射的THz波。实验结果表明,该传感器的Q值高达348。在传感器表面覆盖厚度为20 μm的待测物时,其灵敏度为293 GHz/RIU(Refractive index unit),可用于高灵敏度检测、痕量生物样本检测和疾病早期诊断等领域。
传感器 太赫兹超材料 品质因数 连续域束缚态 双椭圆结构 
光学学报
2021, 41(14): 1428001
Author Affiliations
Abstract
1 College of Computer, National University of Defense Technology, Changsha 410073, China
2 National Innovation Institute of Defense Technology, Beijing 100010, China
3 Graduate School, National University of Defense Technology, Changsha 410073, China
Recently reported plasmon-induced transparency (PIT) in metamaterials endows the optical structures in classical systems with quantum optical effects. In particular, the nonreconfigurable nature in metamaterials makes multifunctional applications of PIT effects in terahertz communications and optical networks remain a great challenge. Here, we present an ultrafast process-selectable modulation of the PIT effect. By incorporating silicon islands into diatomic metamaterials, the PIT effect is modulated reversely, depending on the vertical and horizontal configurations, with giant modulation depths as high as 129% and 109%. Accompanied by the enormous switching of the transparent window, remarkable slow light effect occurs.
terahertz metamaterials ultrafast photoswitching plasmon-induced transparency all-optical modulation 
Chinese Optics Letters
2021, 19(1): 013602
Author Affiliations
Abstract
1 College of Computer, National University of Defense Technology, Changsha 410073, China
2 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
3 National Innovation Institute of Defense Technology, Beijing 100010, China
We experimentally demonstrate for the first time an active all-optical ultrafast modulation of electromagnetically induced transparency-like effect in a hybrid device of sapphire/Si/metamaterial. From numerical simulations, it can be deducted that the tuning process is attributed to the coupling between the dark mode existing in split-ring resonators and the bright mode existing in cut wire resonators. The transmission amplitude modulation is accompanied by the slow-light effect. In addition, the ultrafast formation process is measured to be as fast as 2 ps. This work should make an important contribution to novel chip-scale photonic devices and terahertz communications.
terahertz metamaterials ultrafast photoswitching electromagnetically induced transparency all-optical device 
Chinese Optics Letters
2020, 18(9): 092402
作者单位
摘要
1 华中科技大学 光学与电子信息学院, 武汉 430074
2 华中科技大学 武汉国家光电实验室, 武汉 430074
3 湖北第二师范学院 物理与机电工程学院, 武汉 430205
为了获得一个较宽的等离子诱导透明(PIT)窗口, 提出了一种双层可调谐的太赫兹超材料结构。采用仿真方法对该结构的透过率谱、电场图和电流图进行了分析, 并通过数学模型分析了透射窗口形成机理。结果表明, 该结构可以使亮模式谐振器的移动空间更大, 而且可以得到一个较宽的透射窗口; 该结构能通过平移I形金属棒的位置进而控制PIT窗口的宽度。仿真结果与理论结果拟合得很好。
光学器件 太赫兹超材料 仿真与数值模型分析 等离子诱导透明 optical devices terahertz metamaterials simulation and numerical analysis plasmon induced transparency 
激光技术
2017, 41(6): 826

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!