作者单位
摘要
1 河北工业大学 机械工程学院,天津 300130
2 天津大学 精密测试技术及仪器国家重点实验室,天津300072
3 天津工业大学 天津市电工电能新技术重点实验室,天津 300387
调谐激光吸收光谱(TLAS)技术具有非接触、抗干扰、高灵敏度等优势,可对气体进行浓度、温度、压强的测量。目前已有的压强检测模型中多以谱线的有限特征点进行提取与计算,存在易受干扰、测量误差较大的问题,因而有必要建立新的抗干扰、稳定性强的压强检测模型。针对此问题,文中根据吸收线宽的气体压力测量方法,提出了低压与高压范围内压强与谱线线型拟合函数的数学模型。结合谱线展宽原理,对不同压强下的二次谐波吸收线进行仿真研究。通过改变Gauss线型函数和Lorentz线型函数的半高宽比例关系模拟压强变化,分析信号拟合度的变化趋势,仿真结果表明,在理想情况以及激光器线宽、白噪声、背景干扰影响下,Gauss/Lorentz线型拟合度之比与压强之间存在三阶拟合关系,拟合度均保持在0.998 0以上,且与传统模型相比在动态噪声和背景干扰下具有更好的稳定性。最后对CO2气体1 580 nm位置的实测信号进行处理,实验结果表明,实际检测谱线Gauss/Lorentz线型拟合度之比与压强之间的三阶拟合度为0.986 3,略低于仿真的拟合度0.998 7,符合仿真分析结果。文中提出的方法可以根据吸收谱线的拟合比曲线反演气体压强,为气体压强检测提供了解决方案。
调谐激光吸收光谱 谱线展宽 曲线拟合 压强检测 tunable laser absorption spectroscopy spectral line broadening curve fitting pressure detection 
红外与激光工程
2023, 52(8): 20230428
作者单位
摘要
哈尔滨工程大学 动力与能源工程学院,黑龙江 哈尔滨 150001
针对D4114B型柴油机排放尾气中的CO2气体开展测量研究,计算分析气体的体积分数以及温度。文中以可调谐半导体激光器吸收光谱(Tunable Diode Laser Absorption Spectroscopy,TDLAS)技术原理为基础,利用MATLAB中SIMULINK库中的各个模块,模拟尾气测量的实际过程。仿真结果显示,在模拟柴油机排放环境下,待测量气体CO2的温度仿真相对误差为0.03%。利用船用D4114B型柴油机进行验证实验,在其排气管上增添可视化窗口并安装相应测试系统,利用以半导体为工作介质的可调谐激光器作为激光光源,开展尾气排放中CO2气体温度的在线测试研究,测试相对误差小于4%。由上述研究结果可知,本文中利用SIMULINK搭建的模型所测得的温度值与实际柴油机尾气排放过程中的温度相差较小,因此,其仿真结果能够对柴油机排气测温提供一定的参考。
SIMULINK仿真 可调谐激光吸收光谱 柴油机尾气 排气测量 SIMULINK simulation tunable laser absorption spectroscopy diesel engine emission exhaust temperature measurement 
中国光学
2020, 13(2): 281
作者单位
摘要
华北电力大学(保定)热能系,河北 保定 071000
可调谐激光吸收光谱(TDLAS)技术常用于气体检测,但是某些气体在线强较弱或者低压、低浓度条件下,吸收信号微弱、信噪比高、检测精度低。根据Beer-Lambert定律,提升吸收光程能有效提升吸收信号强度。仿真并设计了一Herriott池结构的多光程测量系统,并对系统有效性以及精确性进行了检验。系统整合在5U机箱内,吸收光路固定,设置了参考光路消除空气中组分吸收影响。只需通过抽气进气阀控制气室内压力,调节激光控制器即可采集数据。系统单光程长204 mm,设计反射100次,实际有效光程为20.28 m。经检测,系统在真空条件下漏气率为56 Pa/h,在低压(10 kPa)条件下漏气率为15 Pa/h。将该系统与普通直接吸收系统对2 005 ppm标准NH3气体检测结果进行了比较,前者吸收率峰值较普通直接吸收系统增强了50倍左右。结果表明,该系统检测误差为2.9%,普通直接吸收系统检测误差高达37.4%。该系统可有效应用于低压、弱吸收线强条件下气体及微量气体现场精确检测。
可调谐激光吸收光谱 Herriott池 NH3浓度测量 tunable laser absorption spectroscopy Herriott cell NH3 concentration measurement 
应用激光
2018, 38(6): 993
作者单位
摘要
1 天津大学精密测试技术及仪器国家重点实验室, 天津 300072
2 天津工业大学天津市电工电能新技术重点实验室, 天津 300387
带间级联激光器(ICL)是近年来发展起来的高性能中红外光源, 覆盖中红外3~6 μm谱段。其具有电光效率高、阈值电流低、可室温连续工作等优点, 是痕量气体检测领域最具吸引力的半导体激光器之一。分析了中红外指纹吸收光谱的特征, 简述了带间级联激光器的发展、工作原理和特性, 综述了基于中红外宽带吸收光谱的高灵敏、特异性检测技术的发展, 并对今后发展做了讨论和展望。
光谱学 带间级联激光器 痕量气体检测 中红外谱段 可调谐激光吸收光谱分析 波长调制光谱 
中国激光
2018, 45(9): 0911006
作者单位
摘要
1 天津大学精密测试技术及仪器国家重点实验室,天津 300072
2 天津工业大学天津市电工电能新技术重点实验室,天津 300387
氨气是主要恶臭物质之一,为了实现工业环境污染源中氨气排放的连续监测,研制了中红外激光气体传感器,与传统近红外氨气传感器受干扰气 体影响较大不同的是,该传感器采用中红外分布反馈结构的带间级联激光器(distributed feedback inter-band cascade laser, DFB-ICL)为光源, 工作波长在3 μm附近,避免了水和CO2干扰气体的影响,同时以空芯光波导(芯径1 mm、长度5 m)做气体池,采用自制多通道数字锁相放大器, 同时解调1f和2f谐波信号,实现免校准测量,获得了传感器的梯度实验结果,线性度高达0.99917,不确定度高达0.9%。Allan方差评价结果显示其 稳定性非常出色,在最佳积分时间167 s时,本传感器的检测限低至9.7 ppb。
分布反馈级间级联激光器 空心光波导 氨气检测 可调谐激光吸收光谱 波长调制光谱 distributed feedback inter-band cascade laser hollow silica waveguide ammonia detection tunable laser absorption spectroscopy wavelength modulation spectroscopy 
大气与环境光学学报
2017, 12(6): 411
作者单位
摘要
1 天津大学 精密测试技术及仪器国家重点实验室,天津 300072
2 天津职业技术师范大学 机电工程系,天津 300222
可调谐半导体激光吸收光谱(TDLAS)技术具有很高的选择性和灵敏度,能够实现污染区域环境中痕量氨气(NH3)的在线检测。影响TDLAS 系统测量精度的因素有很多,温度和压力是最基本的两个影响条件。首先介绍了TDLAS 原理和实验系统,然后研究了温度变化对检测结果的影响,温度在-10℃~50℃之间,使用空芯波导(Hollow Waveguide, HWG)气体池对浓度为50 ppm 的NH3 进行检测,得到其二次谐波光谱图,从图中可以得出在该温度范围内,NH3 二次谐波信号幅度随温度升高而减小。温度不变,气体池内压力从0 kPa 变化到100 kPa 时,二次谐波信号的幅度随着压力增加而减小。根据实验结果,给出了该系统的温度压力修正公式。修正后,50 ppm 的NH3在不同温度下的最大检测相对误差为-5.5%。对30 ppm 的NH3 长时间监测结果表明,修正后系统能够适应现场监测需求。
可调谐激光吸收光谱(TDLAS) 空芯波导(HWG)气体池 氨气检测 温度压力修正 tunable laser absorption spectroscopy (TDLAS) hollow waveguide (HWG) cell ammonia monitoring temperature and pressure correction 
光电工程
2015, 42(12): 0035
作者单位
摘要
1 燕山大学 测试计量技术及仪器河北省重点实验室,河北 秦皇岛 066004
2 秦云科联环境工程有限公司,河北 秦皇岛 066001
棱镜气室相较于传统渐变折射率透镜(GRIN)气室在灵敏度调节性及抑制干涉噪声方面优势明显。基于比尔朗伯(Beer-Lambert)定律在气体弱吸收时的近似表述,以大气环境为背景,利用背景扣除和谐波检测技术,实现了常压下甲烷不同体积分数水平(0-20 %)的检测。依据实测的甲烷在不同体积分数时的直接吸收谱,结合现有分布反馈式激光二极管(DFB-LD)光源选择2ν3带的R5支(1648.212 nm)作为被测吸收峰。气体配置过程中的在线实验表明系统示值与体积分数变化间线性关系良好,而且系统的稳定性和动态响应特性理想。该系统可根据不同现场环境的甲烷体积分数水平,通过步进电机调节气室内有效吸收光程,动态调整系统灵敏度,可作为煤矿巷道或天然气管道沿线的瓦斯监测仪器。
光纤光学 甲烷检测系统 可调谐激光吸收光谱 谐波检测 棱镜气室 
光学学报
2010, 30(5): 1261

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!