作者单位
摘要
中国民航大学机场学院, 天津 300300
为了研究基于光束离散的激光相变硬化蠕墨铸铁RuT300材料的应力分布状态,构建了离散激光相变硬化RuT300弹塑性本构模型,分析温度对热应力和残余应力的影响。结果表明:材料表面较大的热压应力分布与二维离散点阵光斑相对应,激光快速加热引起的材料各部分温度差异使得模型X轴路径上的热应力呈波浪形分布,离散光斑加载区域的X、Y方向热应力峰值为-635 MPa,约为Z方向的1.8倍,随着深度的增加,模型截面热应力逐渐降低;材料表面激光加载区域的残余应力大于非加载区域,X、Y方向的残余拉应力为主要残余应力,应力值在200 MPa 左右,X轴路径上X方向的残余应力最大;随着激光功率的增加,残余应力峰值增大,材料受较大残余应力影响的区域扩大,延长激光加热时间时,加载区域残余应力峰值的变化幅度在2.4 MPa内。
激光技术 光束离散 相变硬化 应力场 蠕墨铸铁 数值模拟 
激光与光电子学进展
2019, 56(23): 231403
作者单位
摘要
中国民航大学机场学院, 天津 300300
利用额定功率为3 kW的Nd∶YAG固体激光器开展激光重熔蠕墨铸铁气门座实验,通过扫描电镜、显微硬度仪,采用荧光粉探伤方法分析激光表面重熔蠕墨铸铁气门座的宏观形貌、显微组织、硬度分布以及重熔层是否存在裂纹。结果表明:经激光表面重熔后,重熔层中部区域组织为枝晶组织,在枝晶组织间弥散分布着针状物和颗粒状物;石墨的扩散降低了材料熔点,由于激光的快速加热和冷却等,重熔层与基体交界处形貌为锯齿形,且在热影响区观察到马氏体壳和莱氏体壳的双壳组织;不同区域的加热和冷却速度的差异导致重熔区表面到基体硬度逐渐降低;调控激光参数可以有效抑制气门座激光重熔层的裂纹。在激光功率为500 W,离焦量为-1 mm,激光扫描速度小于等于5 mm/s的重熔工艺参数下,可以获得无裂纹的重熔层。
激光器 激光表面重熔 蠕墨铸铁 气门座 显微组织 硬度 裂纹 
激光与光电子学进展
2019, 56(21): 211402
作者单位
摘要
中国民航大学机场学院, 天津 300300
为了提高材料表面的耐磨性,实现材料的强韧结合,采用激光热流密度均匀分布的二维离散式5×5点阵光斑,对蠕墨铸铁材料的激光相变硬化过程进行数值模拟,通过改变激光功率和激光加载时间,分析了硬化过程中温度场和硬化层的变化。结果表明:基于光束离散的激光相变硬化温度场分布形态与点阵光斑的空间分布相对应,在激光加载结束时,每个小光斑中心点的温度同时达到峰值,整个光斑中心点的温度因各光斑温度场的叠加而达到最高,且沿着各光斑中心点的温度分布呈波浪形;在截面上随着深度增加,温度逐渐降低,材料的整体温度随着激光功率的增大和激光加载时间的延长而升高;各激光离散光斑的硬化层均呈月牙形,随着激光功率增大,截面硬化层的分布基本不变,处于离散分布状态;随着激光加载时间延长,硬化层从离散形向整体月牙形转变,且数值模拟所得硬化层的最大深度随着2种激光参数的增大而增大;在激光光束离散相变硬化处理过程中,增大激光功率既可以满足材料表面激光辐照的高硬度强化区域与激光未辐照的低硬度非强化区域的强韧结合,又能够增加硬化层深度,而延长激光加载时间虽然可以获得更大的硬化层深度,但热传导传递能量具有累积作用,导致材料表面激光辐照区和非辐照区整体被强化,不能实现材料表面的强韧结合。
激光器 光束离散 激光相变硬化 点阵光斑 蠕墨铸铁 温度场 数值模拟 
激光与光电子学进展
2019, 56(19): 191404
作者单位
摘要
中国兵器科学研究院宁波分院,浙江 宁波 315103
为了提高蠕铁气门座圈密封锥面的耐磨性,采用3 kW固体光纤激光器在气门座圈锥面激光熔覆Stellite 1钴基合金粉末,采用正交实验的方法分析了激光功率、旋转速度、送粉量和保护气流量等工艺因素对熔覆层硬度、组织和裂纹缺陷的影响。结果表明: 熔覆层平均硬度达6.64 GPa以上,较基体提高了2.32倍以上;熔覆层与基体能形成良好的冶金结合;获得了蠕铁气门座圈激光熔覆钴基合金的最佳工艺为: 激光功率1 200 W、旋转速度3 r/min、送粉量10 g/min、保护气流量7 L/min。对上述工艺制备出的熔覆气门座圈进行了气门/气门座冲击磨损模拟试验,并与未经处理的气门座圈进行了对比试验,结果表明: 蠕墨铸铁气门座圈激光熔覆钴基合金涂层后其耐磨损性能是未处理气门座圈的2.87倍。
蠕墨铸铁 激光熔覆 钴基合金 耐磨性 vermicular graphite cast iron laser cladding cobalt-based alloy wear resistance 
应用激光
2014, 34(6): 499

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!