闫万珺 1,2周士芸 1,*谢泉 2桂放 1[ ... ]郭笑天 1
作者单位
摘要
1 安顺学院物理与电子科学系, 贵州 安顺 561000
2 贵州大学理学院新型光电子材料与技术研究所, 贵州 贵阳 550025
采用基于密度泛函理论的第一性原理赝势平面波方法,对不同Co含量的β-FeSi2的能带结构,态密度、分态密度和光学性质进行了计算和比较。几何结构和电子结构的计算结果表明,Co掺杂使得β-FeSi2的晶格常数a增大,b和c变化不大,晶格体积增大。Fe1-xCoxSi2的能带结构变为直接带隙,禁带宽度从0.74 eV减小到0.07 eV,Co的掺入削弱了Fe的3d态电子,但费米能级附近的电子态密度仍主要由Fe的3d态电子贡献。此外,Co掺杂导致β-FeSi2的晶格体积增大,这对掺杂后β-FeSi2的带隙变窄起到一定的调制作用。光学性质的计算表明,Co掺入后介电函数虚部ε2(ω)向低能方向偏移,且光学跃迁强度明显减弱,吸收边发生了红移,光学带隙随Co含量增加而减小。计算结果为β-FeSi2光电材料的设计和应用提供了理论依据。
材料 电子结构 光学性质 掺杂 第一性原理 
光学学报
2011, 31(6): 0616003
作者单位
摘要
北京航空航天大学 物理系,北京 100191
过渡金属硅化物β-FeSi2因其原料价格低廉且利于环保而成为理想的硅基发光材料之一。探讨了β-FeSi2的发光机理,介绍了几种β-FeSi2薄膜制备方法并比较了不同制备方法的特点,总结了最近几年来β-FeSi2的研究进展和主要研究结果。结合作者已经取得的结果和积累的经验,提出了提高材料发光性能方法,认为良好的结晶质量和尽可能减少缺陷是β-FeSi2高效发光的基础,因此有必要探索新的制备方法并改善已有的制备工艺。另外,尝试在β-FeSi2薄膜中应用其它元素,也有可能增大发光效率;而有效激发β-FeSi2的p-i-n结构也是提高发光效率的方法之一。最后,讨论了β-FeSi2的发展趋势,展望了该种材料的发展前景。
β-FeSi2薄膜 薄膜制备 硅基发光材料 光电集成 β-FeSi2 thin film thin film preparation silicon-based luminescent materials optoelectronic integration 
中国光学
2009, 2(2): 119

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!