光学学报, 2011, 31 (6): 0616003, 网络出版: 2020-06-18   

Co掺杂β-FeSi2电子结构及光学性质的第一性原理研究 下载: 562次

First Principles Study of Electronic Structure and Optical Properties for Co-doped β-FeSi2
作者单位
1 安顺学院物理与电子科学系, 贵州 安顺 561000
2 贵州大学理学院新型光电子材料与技术研究所, 贵州 贵阳 550025
摘要
采用基于密度泛函理论的第一性原理赝势平面波方法,对不同Co含量的β-FeSi2的能带结构,态密度、分态密度和光学性质进行了计算和比较。几何结构和电子结构的计算结果表明,Co掺杂使得β-FeSi2的晶格常数a增大,b和c变化不大,晶格体积增大。Fe1-xCoxSi2的能带结构变为直接带隙,禁带宽度从0.74 eV减小到0.07 eV,Co的掺入削弱了Fe的3d态电子,但费米能级附近的电子态密度仍主要由Fe的3d态电子贡献。此外,Co掺杂导致β-FeSi2的晶格体积增大,这对掺杂后β-FeSi2的带隙变窄起到一定的调制作用。光学性质的计算表明,Co掺入后介电函数虚部ε2(ω)向低能方向偏移,且光学跃迁强度明显减弱,吸收边发生了红移,光学带隙随Co含量增加而减小。计算结果为β-FeSi2光电材料的设计和应用提供了理论依据。
Abstract
By using the first principle pseudo-potential plane-wave method based on the density function theory, geometrical structure, electronic structure and optical properties of Co-doped β-FeSi2 are calculated and analyzed. The calculated results of the geometrical structure and electronic structure show that the lattice constant a increases while b and c have little change, the volume of lattice expands, the band structure changes from indirect to direct and the band gap reduces from 0.74 eV to 0.07 eV with increasing of Co from 0 to 0.25. Moreover, it was found that Co-doping can increase the volume of β-FeSi2, which also reduces the band gap. Optical properties calculation indicates that after doping Co, the imaginary part of the dielectric function ε2(ω) moves to a lower energy, the intensity in optical transition decreases, the optical absorption edge generates a red shift, and the optical band gap decreases with increasing concentrations of Co. These results offer theoretical data for design and application of optoelectronic material of β-FeSi2.
参考文献

[1] C. A. Dimitriadis, J. H. Werner, S. Logothetidis et al.. Electronic properties of semiconducting FeSi2 films[J]. J. Appl. Phys., 1990, 68(4): 1726~1734

[2] T. Suemasu, Y. Negishi, K. Takakura et al.. Room temperature 1.6 Mu M electroluminescence from a Si-based light emitting diode with beta-FeSi2 active region[J]. Jpn. J. Appl. Phys., 2000, 39(10B): L1013~L1015

[3] L. Martinelli, E. Grilli, D. B. Migas et al.. Luminescence from β-FeSi2 precipitates in Si. II: origin and nature of the photoluminescence[J]. Phys. Rev. B, 2002, 66(8): 085320~085328

[4] F. Katsuki, T. Toshiro, H. Nakatani et al.. Development of a thermoelectric power generation system using reciprocating flow combustion in a porous FeSi2 element[J]. Rev. Sci. Instrum., 2001, 72(10): 3996~3999

[5] D. Mangelinck, L. Wang, C. Lin et al.. Influence of the addition of Co and Ni on the formation of epitaxial semiconducting β-FeSi2: comparison of different evaporation methods[J]. J. Appl. Phys., 1998, 83(8): 4193~4201

[6] W. Bohne, G. U. Reinsperger, J. Rohrich et al.. Comparative concentration analysis of Cr and Co in FeSi2 films performed by ERDA and RBS[J]. Nucl. Instrum. Meth. B, 2000, 161~163: 467~470

[7] D. Panknin, E. Wieser, W. Skorupa et al.. Buried (Fe1-xCox)Si2 layers with variable band gap formed by ion beam synthesis[J]. Appl. Phys. A-Mater., 1996, 62(2): 155~162

[8] K. Szymanski, L. Dobrzynski, A. Andrejczuk et al.. On the preferential location of Co in β-FeSi2[J]. J. Phys.: Condens. Matter, 1996, 8(29): 5317~5324

[9] K. Irmscher, W. Gehlhoff, Y. Tomm et al.. Iron group impurities in B-FeSi2 studied by EPR [J]. Phys. Rev. B, 1997, 55(7): 4417~4425

[10] M. Fanciulli, A. Zenkevich, G. Weyer et al.. Structural and optical properties of Fe1-xMxSi2 thin films (M=Co, Mn 0

[11] E. Wieser, D. Panknin, W. Skorupa et al.. Ion beam synthesis of ternary (Fe1-xCox)Si[J]. Nucl. Instrum. Meth. B, 1993, 80-81: 867~871

[12] 闫万珺, 谢泉. 掺杂β-FeSi2的电子结构及光学性质的第一性原理研究[J]. 半导体学报, 2008, 29(6): 1141~1146

    Yan Wanjun, Xie Quan. First principle calculation of the electronic structure and optical properties of impurity-doped β-FeSi2 semiconductors[J]. Chin J. Semicond., 2008, 29(6): 1141~1146

[13] M. G. Grimaldi, C. Buongiorno, C. Spinella et al.. Luminescence from β-FeSi2 precipitates in Si. I. morphology and epitaxial relationship[J]. Phys. Rev. B, 2002, 66(8): 085319

[14] L. Martinelli, E. Grilli, D. B. Migas et al.. Luminescence from β-FeSi2 precipitates in Si. II: origin and nature of the photoluminescence[J]. Phys. Rev. B, 2002, 66(8): 085320

[15] J. Tani, H. Kido. First principle calculation of the geometrical and electronic structure of impurity-doped-FeSi2 semiconductors[J]. J. Solid State Chemistry, 2002, 163(1): 248~252

[16] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究[J]. 物理学报, 2005, 54(11): 5308~5313

    Pan Zhijun, Zhang Lanting, Wu Jiansheng. A first principle study of electronic and geometrical structures of semiconducting β-FeSi2 with doping[J]. Acta Physica Sinica, 2005, 54(11): 5308~5313

[17] 崔冬萌, 谢泉, 陈茜 等. Si(001)面上外延生长的Ru2Si3电子结构及光学性质研究[J]. 光学学报, 2009, 29(11): 3152~3156

    Cui Dongmeng, Xie Quan, Chen Qian et al.. Study on the electronic structure and optical properties of Ru2Si3 epitaxial on Si(001)[J]. Acta Optica Sinica, 2009, 29(11): 3152~3156

[18] 周士芸, 谢泉, 闫万珺 等. 锰掺杂二硅化铬电子结构和光学性质的第一性原理计算[J]. 光学学报, 2009, 29(10): 2848~2853

    Zhou Shiyun, Xie Quan, Yan Wanjun et al.. First-principles calculation of electronic structure and optical properties of CrSi2 with doping Mn[J]. Acta Optica Sinica, 2009, 29(10): 2848~2853

[19] 陈茜, 谢泉, 杨创华 等. 掺杂Mg2Si电子结构及光学性质的第一性原理计算[J]. 光学学报, 2009, 29(1): 229~235

    Chen Qian, Xie Quan, Yang Chuanghua et al.. First-principles calculation of electronic structure and optical properties of Mg2Si with doping[J]. Acta Optica Sinica, 2009, 29(1): 229~235

[20] 张富春, 邓周虎, 阎军锋 等. ZnO电子结构与光学性质的第一性原理计算[J]. 光学学报, 2006, 26(8): 1203~1209

    Zhang Fuchun, Deng Zhouhu, Yan Junfeng et al.. First-principles calculation of electronic structure and optical properties of ZnO[J]. Acta Optica Sinica, 2006, 26(8): 1203~1209

[21] 张富春, 张志勇, 张威虎 等. AZO(ZnOAl)电子结构与光学性质的第一性原理计算[J]. 光学学报, 2009, 29(4): 1025~1031

    Zhang Fuchun, Zhang Zhiyong, Zhang Weihu et al.. First-principles calculation of electronic structure and optical properties of AZO(ZnOAl)[J]. Acta Optica Sinica, 2009, 29(4): 1025~1031

[22] 向东, 刘波, 顾牡 等. YTaO4和LuTaO4电子结构和光学性质的理论计算[J]. 光学学报, 2009, 29(2): 448~453

    Xiang Dong, Liu Bo, Gu Mu et al.. Theoretical calculation of electronic structures and optical properties of YTaO4 and LuTaO4[J]. Acta Optica Sinica, 2009, 29(2): 448~453

[23] 李春霞, 党随虎, 韩培德. 空位缺陷对CdS电子结构和光学性质的影响[J]. 光学学报, 2010, 30(5): 1406~1412

    Li Chunxia, Dang Suihu, Han Peide. Vacancies effects on electronic structure and optical properties of CdS[J]. Acta Optica Sinica, 2010, 30(5): 1406~1412

[24] 蔡建秋, 陶向明, 罗海军 等. Sr2RuO4各向异性光学性质的第一性原理研究[J]. 光学学报, 2010, 30(12): 3580~3585

    Cai Jianqiu, Tao Xiangming, Luo Haijun et al.. Ab-initio investigation of anisotropic optical properties of Sr2RuO4[J]. Acta Optica Sinica, 2010, 30(12): 3580~3585

[25] 程正则, 徐斌, 吴四清. NaPd3O4的电子结构和光学性质[J]. 中国激光, 2009, 36(8): 2126~2129

    Cheng Zhengze, Xu Bin, Wu Siqing. Electronic structure and optical properties of NaPd3O4[J]. Chinese J. Lasers, 2009, 36(8): 2126~2129

[26] P. Y. Dusausoy, J. Protas, R. Wandji. Structure cristalline du disiliciure de fer, FeSi2 [J]. Acta Crystallog, 1971, B27: 1209~1218

[27] M. D. Segall, J. D. Philip Lindan, M. J. Probert. First principle simulation: ideas, illustrations and the CASYEP code [J]. J. Phys: Condense. Matter, 2002, 14(11): 2717~2744

[28] John P. Perdew, Kieron Burke. Matthias Ernzerhof. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77(18): 3865~3868

[29] David Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B, 1990, 41(11): 7892~7895

[30] T. H. Fischer, J. Almlof. General methods for geometry and wave-function optimization [J]. J. Phys. Chem., 1992, 96(24): 9768~9774

[31] H. J. Monkhorst, J. D. Pack. Special points for Brillouin-zone integrations [J]. Phys. Rev. B, 1976, 13(12): 5188~5192

[32] 闫万珺, 谢泉, 张晋敏 等. 铁硅化合物β-FeSi2带间光学跃迁的理论研究[J]. 半导体学报, 2007, 28(9): 1381~1387

    Yan Wanjun, Xie Quan, Zhang Jinmin et al.. Interband optical transitions in semiconducting iron disilicide β-FeSi2[J]. Chin. J. Semicond., 2007, 28(9): 1381~1387

[33] Z. J. Pan, L. T. Zhang, J. S. Wu. First-principles study of electronic and geometrical structures of semiconducting β-FeSi2 with doping [J]. Mat. Sci. Eng. B-Solid, 2006, 131(1-3): 121~126

[34] D. B. Migas, L. Miglio. Band-gap modifications of β-FeSi2 with lattice distortions corresponding to the epitaxial relationships on Si (111) [J]. Phys. Rev. B, 2000, 62(16): 11063~11070

[35] 方容川. 固体光谱学[M]. 合肥:中国科学技术大学出版社, 2001. 71~75

    Fang Rongchuan. Solid-State Spectroscopy [M]. Hefei: University of Science and Technology Press, 2001. 71~75

[36] 沈学础. 半导体光谱和光学性质[M]. 北京:科学出版社, 1992. 76~94

    Shen Xuechu. Semiconductor Spectra and Optical Properties [M]. Beijing: Science Press, 1992. 76~94

闫万珺, 周士芸, 谢泉, 桂放, 张春红, 郭笑天. Co掺杂β-FeSi2电子结构及光学性质的第一性原理研究[J]. 光学学报, 2011, 31(6): 0616003. Yan Wanjun, Zhou Shiyun, Xie Quan, Gui Fang, Zhang Chunhong, Guo Xiaotian. First Principles Study of Electronic Structure and Optical Properties for Co-doped β-FeSi2[J]. Acta Optica Sinica, 2011, 31(6): 0616003.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!