作者单位
摘要
1 中国航发成都发动机有限公司,四川 成都 610503
2 成都凯天电子股份有限公司,四川 成都 611730
采用激光修复技术和GH4169合金粉末,在GH738合金基材试块上制备激光成形修复件,对其进行固溶+双时效热处理。对试块进行了高温持久和高温低周疲劳性能试验,观察试样断口形貌并分析断裂机理。结果表明:激光修复GH4169/GH738合金的组织结合处冶金质量良好,呈现向外连续生长的柱状晶组织;在650 ℃、690 MPa下进行持久试验,修复试样晶界析出Laves相,导致裂纹的萌生,与晶界分离形成微观空洞,同时气孔促进了裂纹的扩展,为穿晶和沿晶的混合韧性断裂模式。在455 ℃下进行低周疲劳试验,发现疲劳裂纹源于表面和气孔,以河流状花样向中心扩散,拓展区存在疲劳辉纹,为解理和穿晶两种断裂模式。采用GH4169合金粉末修复可满足常规铸锻GH738合金性能要求。
合金 激光修复 高温持久性能 高温低周疲劳性能 断裂机理 GH4169 superalloy laser forming repair high temperature persistent properties high temperature low cycle fatigue properties fracture mechanism 
应用激光
2023, 43(6): 0042
冯星涛 1,2,3李健民 1,2,3耿硕 1,2,3池煜璟 1,2,3[ ... ]张冬云 1,2,3,*
作者单位
摘要
1 北京工业大学材料与制造学部激光工程研究院,北京 100124
2 北京市数字化医疗3D打印工程技术研究中心,北京 100124
3 数字化医疗3D打印北京市国际科技合作基地,北京 100124
Inconel 718高温合金被广泛用于制造航天发动机等的热端零部件,提高其疲劳性能对于零部件的长期稳定服役意义重大。研究了不同热处理制度对激光选区熔化成形Inconel 718合金微观组织、相分布及疲劳性能的影响。采用电镜和电子背散射衍射仪分析了热处理试样的断口形貌、断口纵剖面应力分布及微观特征,详细阐述了热处理合金的低周疲劳断裂机理。结果表明:相较于成形态,热处理合金内部析出了δ相和γ″、γ′强化相,内部应力得以释放,疲劳性能显著提升。经过均匀化+固溶+双时效热处理后,Inconel 718合金的疲劳循环周次能够达到31990次。基于Orowan强化机制,晶粒内弥散分布的γ″、γ′强化相以及晶界上析出的δ相会阻碍位错滑移,从而延缓基体中微裂纹的扩展,增加疲劳过程中的循环周次。本次试验采用的热处理制度为激光选区熔化成形Inconel 718零部件提供了参考。
激光技术 激光选区熔化 Inconel 718合金 低周疲劳 热处理 
中国激光
2023, 50(16): 1602301
作者单位
摘要
1 中南大学材料科学与工程学院, 湖南 长沙 410083
2 北京动力机械研究所, 北京 100074
采用轴向应变控制法研究了激光增材制造成形GH3536合金在室温和800 ℃下的低周疲劳性能,并通过扫描电镜和透射电镜分别对合金的断口形貌、组织进行了分析。结果表明:温度和应变的增加会缩短合金的疲劳寿命。在室温下,合金在不同应变幅下均表现出了先循环硬化后循环软化的特征,且疲劳裂纹源单一;位错密度的增加是合金循环硬化的重要因素。在800 ℃下,合金在低应变幅下先循环硬化,再出现明显的循环稳定现象,最后循环软化至失效;在高应变幅下则表现为先循环硬化再循环软化。800 ℃下合金的裂纹源数量较多,相的析出及其对位错的钉扎使合金发生了硬化。合金的疲劳寿命与应变幅符合Basquin-Coffin-Manson关系。塑性应变能模型能够准确地预测疲劳寿命,预测结果均位于1.5倍分散带以内。
激光技术 低周疲劳 增材制造 GH3536合金 寿命预测 
中国激光
2021, 48(22): 2202009
翟战江 1,2赵琳 1,**彭云 1,*朱姣 2曹洋 1
作者单位
摘要
1 钢铁研究总院焊接所, 北京 100081
2 钢研纳克检测技术股份有限公司, 北京 100081
采用MTS疲劳试验机对DP980钢激光焊接接头进行了低周疲劳试验,分析了应变-疲劳寿命数据,并利用金相显微镜和扫描电镜进行了组织分析和断裂分析。结果表明,母材表现出最好的抗疲劳性能。当应变幅Δεt/2≤0.4%时,线能量为80 J/mm的试样表现出较好的抗疲劳性能;当Δεt/2=0.5%时,三个激光焊接接头的疲劳寿命接近。当Δεt/2≥0.3%时,母材和DP980钢激光焊接接头经历循环软化阶段、循环饱和阶段和循环软化阶段;当Δεt/2=0.25%时,母材和DP980钢激光焊接接头依次经历了循环硬化阶段、循环软化阶段、循环饱和阶段和循环软化阶段。DP980钢激光焊接接头的亚临界热影响区是裂纹萌生的主要区域,不同应变幅下的疲劳裂纹扩展区均有疲劳条带,疲劳断裂的方式是穿晶断裂。
激光技术 回火马氏体 线能量 低周疲劳 疲劳寿命 疲劳条带 
中国激光
2021, 48(18): 1802003
作者单位
摘要
1 西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
2 西安交通大学金属材料强度国家重点实验室, 陕西 西安 710049
研究了激光熔化沉积硼变质TC4钛合金材料在不同应变幅值下的低周疲劳性能。结果表明,激光熔化沉积硼变质TC4样件在0.8%~1.0%应变幅值下的低周疲劳性能与退火态锻件相当。通过对比分析固溶时效态激光熔化沉积硼变质TC4与退火态TC4锻件的微观组织、低周疲劳性能可以发现,当经受高于1.0%的应变幅值时,固溶时效态激光熔化沉积硼变质TC4的网篮组织比TC4退火态锻件的双态组织具有更好的抵抗裂纹扩展的能力。此外,固溶时效态激光熔化沉积硼变质TC4钛合金在各种应变幅值下均发生了不同程度的循环软化行为。最后采用扫描电镜对固溶时效态激光熔化沉积硼变质TC4钛合金的低周疲劳断口形貌进行了观察,并研究了低周疲劳失效过程中裂纹的扩展过程。
激光技术 TC4钛合金 低周疲劳性能 激光熔化沉积  微观组织 
中国激光
2020, 47(12): 1202003
作者单位
摘要
1 江苏大学材料科学与工程学院, 江苏 镇江 212013
2 上海交通大学密西根学院, 上海 200240
3 江苏理工学院机械工程学院, 江苏 常州 213000
为了研究激光冲击对AZ80-T6 挤压镁合金低周疲劳性能的影响,采用钕玻璃脉冲激光器对疲劳试样进行激光冲击强化(LSP)和激光冲击温强化(WLSP)处理,并进行拉-拉疲劳实验。结果表明:LSP 和300 ℃时WLSP 处理后镁合金表面产生的残余压应力分别为-125 MPa 和-158 MPa,而其疲劳寿命分别比原始试样提高11.42%和75.74%。WLSP 明显地延迟裂纹萌生时间,提高AZ80-T6 镁合金的疲劳寿命。另外对激光冲击诱导的镁合金微观结构及其低周疲劳行为进行了分析和讨论。
激光技术 AZ80镁合金 激光冲击温强化 残余压应力 低周疲劳行为 微观结构 
中国激光
2015, 42(11): 1103004
作者单位
摘要
1 江苏大学机械工程学院, 江苏 镇江 212013
2 常州工学院江苏省数字化电化学加工重点建设实验室, 江苏 常州 213002
利用高功率高重复率的Nd∶YAG 激光对6061-T6 铝合金钨极弧焊(TIG)焊缝和热影响区进行冲击强化处理,通过调整激光能量、冲击区域,进行了对比试验。通过低循环大应力拉伸疲劳测试获得了未处理和激光冲击强化后的焊接接头试样的安全寿命,分析了激光冲击强化对铝合金焊接接头疲劳性能的影响,根据断口形貌扫描电子显微镜(SEM)和X 射线能谱分析(EDS),残余应力和硬度测试结果,研究了激光冲击强化提高焊接接头抗拉疲劳性能的微观机理。结果表明,激光冲击强化使6061-T6 铝合金焊接接头安全寿命提高117.1%,其中激光能量为5 J、冲击区域为18 mm×16 mm,双面冲击后接头试样获得最大疲劳寿命。同时激光冲击强化抵消了接头表面残余拉应力并产生残余压应力,显著提高接头硬度,影响深度约1.4 mm。
光学制造 激光技术 激光冲击强化 铝合金 焊接接头 低周疲劳 残余应力 
激光与光电子学进展
2015, 52(6): 061403
作者单位
摘要
1 江苏大学 材料科学与工程学院,江苏 镇江 212013
2 江苏大学 机械工程学院,江苏 镇江 212013
利用输出波长为1.054 μm,脉冲宽度为20 ns的激光,对表面涂覆硅酸乙酯吸收涂层的2A02铝合金进行了冲击强化和疲劳试验。通过对冲击处理前后材料的微观组织、硬度和疲劳寿命的比较,分析了激光冲击处理对2A02铝合金材料疲劳行为的影响。结果表明,激光冲击强化可使2A02铝合金表面残余压应力达到120 MPa以上,强化层深度达1.5 mm,疲劳寿命为未经激光冲击强化处理试样的1.835-2.882倍。对合金疲劳试样断口微观形貌的扫描电镜(SEM)分析结果表明,疲劳断口由疲劳源、疲劳区和瞬断区组成,经激光冲击强化的试样疲劳源移向激光强化层以内,残余压应力有效地延迟疲劳源区的裂纹萌生,减缓疲劳裂纹的扩展速率,“循环硬化”有效抑制或减少了二次裂纹的产生,使激光冲击2A02铝合金的疲劳寿命得以大幅提高。
激光技术 激光冲击强化 铝合金 低周疲劳 疲劳断口分析 
中国激光
2009, 36(12): 3323

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!