作者单位
摘要
中国科学院上海光学精密机械研究所航天激光工程部,上海 201800
光电互联技术在光电通信、光电导航等**领域,高性能处理器以及民用通信等领域有着独特的优势。对于目前高性能计算和高速率通信系统中,无论是板到板还是板内各模块之间的链路,对更高带宽的需求持续增加,光电互联可代替传统电互联解决这一问题,同时降低系统成本与功耗,使系统微型化、高性能化。光电互联技术按光传输介质可分为自由空间光互联技术、聚合物光波导光电互联技术、光纤光电互联技术三类。简要介绍了光电互联技术的定义与三类光电互联技术,阐述了国内外聚合物光波导光电互联技术与光纤光电互联技术的发展动态,讨论对比了三类光电互联技术优缺点,指出了该领域的关键技术与发展趋势,为我国在该领域未来的研究方向提供参考。
光电子 光电互联 聚合物光波导光电互联 光纤光电互联 光电印刷电路板 
激光与光电子学进展
2024, 61(07): 0706008
作者单位
摘要
1 中国电子科技集团公司第三十研究所,四川 成都 610093
2 桂林电子科技大学 机电工程学院,广西 桂林 541004
挠性光电印制电路板(Flexible Electro-Optical Printed Circuit Board, FEOPCB)在高温层压制作过程中,埋入光纤会产生热应力,造成光纤损坏等缺陷,影响其可靠性和高速信号传输性能。为了降低FEOPCB弯曲半径并提升其可靠性,将在双面覆铜聚酰亚胺(PI)基板上设计制作高精度矩形光纤定位槽。首先建立有/无涂覆层光纤埋入挠性基板有限元仿真模型,对FEOPCB制造工艺进行模拟仿真,并对埋入光纤应力及影响因素进行分析。结果表明,有涂覆层光纤所受应力远小于无涂覆层光纤。针对有涂覆层光纤,采用激光刻蚀技术在双面覆铜PI基板上制作了高精度矩形定位槽,通过高温层压工艺完成了FEOPCB制作。FEOPCB完成了温度冲击、低温、高温、湿热和10万次弯曲疲劳可靠性试验,利用光学显微镜观察分析,埋入光纤无高温降解和破裂等缺陷。FEOPCB最小弯曲半径小至2 mm,弯曲损耗分别为0.57 dB (90°)和1.12 dB (180°),且相邻光纤之间无串扰,在850 nm波长条件下通信速率可达10 Gbps,误码率小于10−16
光电互联 挠性光电印制电路板 有限元分析 定位微槽 高可靠性 opto-electronic interconnection FEOPCB finite element analysis positioning groove high reliability 
红外与激光工程
2023, 52(4): 20220514
作者单位
摘要
工业和信息化部电子第五研究所, 广州 510610
为了研究挠性光电互联结构在实际工程应用中的可靠性, 建立了埋入光纤挠性基板光电互联结构有限元模型, 根据光器件Telcordia GR-468标准加载热循环试验条件, 对光电互联结构中的焊点应力、光纤应力和光电耦合效率进行仿真分析。热—结构仿真结果表明, 焊点和光纤的最大等效应力均在安全范围内, 光电耦合产生的最大损耗为0.7 dB, 光电传输未受到显著影响, 可以判定挠性光电互联结构在标准热循环作用下能够保证光电传输的稳定性。
光电互联结构 挠性基板 热应力 可靠性 photoelectric interconnection structure flexible printed circuit board thermal stress reliability 
光通信研究
2020, 46(4): 58
作者单位
摘要
1 桂林电子科技大学 机电工程学院, 广西 桂林 541004
2 广西制造系统与先进制造技术重点实验室, 广西 桂林 541004
为了提高埋入光纤挠性基板光电互联系统中激光束与光纤之间的耦合效率, 设计了一种可分离式的高效光电耦合模块。对耦合模块的结构尺寸进行了设计, 并运用Matlab软件分析了激光束经过45°全反射镜时的能流变化情况; 针对芯径为62.5 μm、数值孔径为0.25的多模光纤, 利用Zemax软件仿真模拟光纤耦合系统, 并用正交下降法优化耦合系统结构, 将单路波长为1 310 nm、输出功率为1 W的垂直腔面激光束耦合进光纤。分析结果表明, 耦合效率与轴向偏差、角向偏差成中心对称分布, 当制造误差最大时, 耦合效率达到79.37%, 耦合损耗为1.00 dB。该光电耦合模块具有较高的定位误差, 最高耦合效率可达85.35%, 最低耦合损耗为0.69 dB。
光电互联 光纤耦合 正交下降法 误差分析 optoelectronic interconnection optical fiber coupling Zemax Zemax vertical cavity surface emitting laser deviation analysis 
发光学报
2019, 40(1): 76

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!