聂语葳 1,2李伟 1,*吕家纲 1,2潘智鹏 1,2[ ... ]马骁宇 1
作者单位
摘要
1 中国科学院半导体研究所光电子器件国家工程研究中心,北京 100083
2 中国科学院大学材料科学与光电技术学院,北京 100049
单模795 nm垂直腔面发射激光器作为铷原子钟的激光光源,一般采用氧化限制结构获得单模输出。对垂直腔面发射激光器外延结构以及氧化限制孔径进行了优化设计。基于有限元分析方法,利用光纤波导理论和热电耦合模型,对氧化孔径的光学和电学限制进行了模拟,计算分析了实现单模和良好热电特性所需的氧化孔径大小。实验制备了具有不同氧化孔径的器件,并进行了功率-电流以及光谱特性测试。当氧化孔径为1.9 μm时,在3~7 mA注入电流下器件始终保持单模输出,边模抑制比大于35 dB;器件保持单模输出的最大氧化孔径为3.8 μm,室温下阈值电流为1 mA,最大饱和输出功率为2 mW,斜率效率为0.3 W/A,3 mA注入电流下的出射波长为790 nm,边模抑制比大于30 dB。制备的室温下单模特性良好的790 nm垂直腔面发射激光器,为实现高温下795 nm偏振稳定单模输出提供了可能。
激光器 垂直腔面发射激光器 原子钟 单模 氧化限制层 
中国激光
2024, 51(6): 0601004
作者单位
摘要
华中光电技术研究所—武汉光电国家研究中心, 湖北武汉 430223
介绍了一种用于原子气室的无磁加热薄膜技术。原子磁力仪、原子陀螺仪、原子钟等采用热原子系综的精密测量仪器通常采用原子气室作为物理系统, 为了保证足够的原子数密度, 原子气室工作温度通常为 80~120℃, 因此无磁加热技术是热原子钟的核心技术之一。采用多物理场有限元仿真分析通电线圈在小电流(直流 0.2A)条件下产生的稳态磁场分布情况, 通过对比不同线圈结构产生的磁场分布, 得到满足性能要求的通电线圈结构。实验结果表明, 采用优化后结构的无磁加热薄膜产生的剩磁低于 100nT, 满足原子气室无磁加热要求。该设计对以原子气室的原子钟性能提升提供了可靠保证, 并为原子钟小型化提供参考。
无磁加热 原子气室 加热线圈 磁场噪声 原子钟 有限元分析 non-magneticheating atomicchamber heatingcoil magneticnoise atomicclock finiteelementanalysis 
光学与光电技术
2023, 21(3): 87
亓航航 1,2杨博文 1,2赵浩杰 1,2肖玲 1[ ... ]成华东 1,*
作者单位
摘要
1 中国科学院上海光学精密机械研究所量子光学重点实验室,上海 201800
2 中国科学院大学,北京 100049
通过调制转移光谱稳频的方式,将外腔半导体激光器频率锁定于87Rb原子D2线超精细跃迁52S1/2,F=2→52P3/2,F=3,使激光器线宽由自由运转的382.18 kHz压窄至稳频后的37.94 kHz。稳频后的窄线宽激光用于积分球冷原子钟的探测光,可以将激光频率噪声对原子钟短期稳定度的影响降低至5.6×10-14 τ-1/2
激光器与激光光学 调制转移光谱 激光稳频 外腔半导体激光器 积分球冷原子钟 频率稳定度 
激光与光电子学进展
2023, 60(15): 1514008
赵国栋 1,2卢晓同 1,*常宏 1,2,**
作者单位
摘要
1 中国科学院国家授时中心时间频率基准重点实验室,陕西 西安 710600
2 中国科学院大学天文与空间科学学院,北京 100049
光钟在近20年里发展迅速,稳定度和系统不确定度均比当前最好的微波原子钟高出两个量级,目前已有10个光学跃迁被国际计量局选定为二级秒定义并参与原子时的产生。本文介绍了光钟的工作原理和系统性能的评估,阐述了离子光钟和光晶格钟的最新研究进展,并总结了光钟绝对频率测量方法和进入二级秒定义的光频跃迁的测量结果。
光通信 光钟 光频标 秒定义 原子钟 
激光与光电子学进展
2023, 60(11): 1106003
作者单位
摘要
1 北京工业大学 信息学部 光电子技术教育部重点实验室,北京 100124
2 中国科学院半导体研究所,北京 100083
针对芯片原子钟(铯)用激光光源系统对垂直腔面发射激光器(VCSEL)模式及工作温度的需求,研制出可以高温工作的氧化限制型基横模 894.6 nm VCSEL。通过缩小VCSEL氧化孔直径至3 μm,限制VCSEL高阶横模激射,保证器件基横模低阈值电流工作。通过常温下腔模与材料增益失谐12 nm 的结构设计,使器件能够在50~65 ℃ 高温时,激射波长对准原子能级且工作模式稳定。实验所制备的VCSEL在工作温度为55 ℃、注入电流1.8 mA 时,激射波长达到 894.6 nm,边模抑制比(SMSR)大于35 dB,基横模功率为0.75 mW,具有11.4°的远场发射角。当温度为65 ℃时,器件SMSR大于25 dB,基横模功率大于0.1 mW。该高温基横模工作的VCSEL在芯片原子钟中具有重要的应用前景。
垂直腔面发射激光器 基横模 高温 原子钟 vertical cavity surface emitting laser base transverse mode high temperature cesium atomic clock 
红外与激光工程
2022, 51(5): 2021G007
卢晓同 1常宏 1,2,*
作者单位
摘要
1 中国科学院国家授时中心时间频率基准重点实验室, 陕西 西安 710600
2 中国科学院大学天文与空间科学学院, 北京 100049

经过近20年的发展,基于光频跃迁的光晶格原子钟展示了优异的频率稳定度和不确定度,是重定义时间单位“秒”的有力候选者之一。随着地面基准光晶格原子钟性能的提升,光晶格原子钟已经成功地走出了实验室,实现了可搬运晶格原子钟并正在研制可在太空中运行的空间光晶格原子钟。本文综述了影响光晶格原子钟稳定度和准确度的关键因素,以及抑制或者消除这些因素的主要技术;并结合国内外的研究成果,综述了地面基准光晶格原子钟、可搬运光晶格原子钟和空间光晶格原子钟的技术特点和研究进展。

量子光学 原子与分子物理学 光晶格原子钟 原子频标 
光学学报
2022, 42(3): 0327004
作者单位
摘要
北京大学 物理学院,北京 100871
精密测量是现代物理学的基石,而激光光源的发展直接推动了测量科学与技术的进步。21世纪初,光学频率梳的发明促使人们成功实现最精准的时间/频率标准装置——光学原子钟,推动了绝对光学频率测量、基本物理常数测量、精密距离测量以及分子光谱测量等精密测量技术的发展。然而早期的光梳光源系统复杂、价格昂贵,一般工作于大型实验室里,限制了其应用场景的拓展。近年来,出现了一种新型集成微腔光频梳,其具有体积小、功耗低、可批量制备等优势,吸引了科学界和产业界的广泛关注。不同于传统光梳,这种集成微腔光梳不需要依赖增益介质或可饱和吸收体实现锁模,而是通过高品质因子微腔增强的非线性作用来实现光梳的激发与锁模。这种全新的光梳激发与锁模机制降低了精密光源的体积和成本,在平民化精密测量应用中具有优势。文中介绍了集成微腔光梳在精密测量领域中取得的进展,主要围绕微型化光学原子钟、超快精密距离测量、精密光谱测量三个方向。最后对集成微腔光梳在未来精密测量应用中的机遇与挑战进行了总结与展望。
精密测量 集成微腔光梳 光学原子钟 光孤子 precision measurement integrated microresonator-based optical frequency comb optical atomic clock optical soliton 
红外与激光工程
2021, 50(11): 20210560
作者单位
摘要
1 西北大学 物理学院 现代物理研究所, 西安70027
2 中国科学院国家授时中心, 西安710600
基于声光调制器作为反馈器件设计了原子钟常用波段780 nm激光器的功率锁定构型。通过低噪声设计和参数优化实现了关键噪声源的抑制和激光器功率锁定。实验结果表明,在20~10 000 Hz频偏范围内,激光的相对强度噪声得到有效抑制。尤其在1 300 Hz频率处,RIN抑制达到20 dB。同时,中期(9 000 s)功率相对稳定性由±0.754%提升78倍至±0.009 68%。根据CPT原子钟的典型参数,激光相对强度噪声对原子钟频率稳定度影响仅为2.1×10–14@1 s。另外,中期稳定度由无锁定情况下的4.67×10-2提高到锁定状态下的8.67×10-5,得到了较好的改进,有利于改善原子钟中期频率稳定度。
激光器 原子钟 相对强度噪声 声光调制器 功率稳定性 Laser Atomic clock Relative intensity noise Acousto-optic modulator Power stability 
光子学报
2021, 50(9): 0914002
程鹤楠 1,2邓思敏达 1,2张镇 1,2项静峰 1[ ... ]吕德胜 1,2,**
作者单位
摘要
1 中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
2 中国科学院大学材料科学与光电技术学院, 北京 100000
喷泉钟量子化轴磁场的空间均匀性和时间稳定性是制约原子钟输出频率稳定度和不确定度的重要因素。从外磁场屏蔽、磁场线圈设计、线圈电流源稳定性等方面考虑,构建并优化设计了一套可搬运铷喷泉原子钟量子化轴磁场系统。为了消除环境磁场对量子化轴磁场的影响,使用5层坡莫合金磁屏蔽进行外磁场的屏蔽;利用4组对称的补偿线圈,通过计算给予合适的电流,获得喷泉钟内部30 cm原子自由飞行尺度内磁场波动小于1 nT;通过改善C场供电电流方式,从而优化量子化轴磁场的时间稳定性,磁场随时间的波动小于0.1 nT。优化后喷泉钟长期频率稳定度达2.9×10 -16,磁场空间分布不均匀性带来的二阶塞曼频移不确定度为3.4×10 -19,由磁场随时间波动带来的二阶塞曼频移的不确定度为5.1×10 -17
原子与分子物理学 塞曼效应 超精细结构 原子钟 磁敏跃迁法 
光学学报
2021, 41(19): 1902001
吉经纬 1,2程鹤楠 1,2张镇 1,2刘亢亢 1[ ... ]吕德胜 1,*
作者单位
摘要
1 中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
能够长期自主运行的稳频激光器是喷泉原子钟连续工作的基础。基于铷原子喷泉钟中的780 nm商用半导体激光器,利用嵌入式系统设计了一个长期全自动稳频系统。该系统具有自动识别铷饱和吸收谱线的目标峰、长期锁定频率与意外失锁后的快速重锁的功能。提出了一种动态调整工作点的方法。在激光器长期运行过程中,受温度、湿度和器件老化等因素的影响,目标工作点会随时间发生变化,所提方法可解决该问题。利用该方法,激光器的稳频系统不易失锁,即使失锁也可以快速重新锁回。将所提稳频系统成功应用于可搬运铷喷泉原子钟中,铷喷泉原子钟在搬运后能够快速投入工作,激光频率的长期锁定时间可达一个月以上。激光频率相对于铷饱和参考谱线的频率长期稳定度约为2.3×10 -13,可搬运铷喷泉原子钟的长期稳定度在搬运前后均达到了10 -16量级。
激光器 激光冷却 喷泉原子钟 自动稳频 稳定度 
光学学报
2020, 40(22): 2214002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!