作者单位
摘要
天津大学 精密测试技术及仪器国家重点实验室,天津 300072
光学显微镜是人类探索微观世界的重要工具,在生物学、医学、材料学、精密测量学等领域发挥重要作用。由于衍射极限的存在,发展更高质量、更高空间分辨率的超分辨光学显微成像技术成为当下研究的前沿热点。基于微球透镜的超分辨显微成像技术有着易于实现、简单直接和免标记的显著优点,发展潜力巨大。但是单个微球的视野有限,且难以进行精确定位。提高微球的可操控性,拓展超分辨显微成像视场的范围,已成为该技术突破发展的核心关键。文中在介绍微球超分辨的成像原理,分析影响成像质量主要因素的基础上,重点总结了国内外团队在拓展微球透镜超分辨显微成像视场方面的最新研究进展。根据微球的操控方式,将研究工作总结为机械接触控制、微球辅助增强层、非接触控制和微球物镜一体化四类进行介绍,探讨其技术特点,并对大视场成像、图像拼接等面向视场拓展的图像处理技术进行论述。最后,提出微球透镜超分辨显微成像技术亟待解决的关键问题、存在的难点与挑战,以及未来开展研究工作的突破点,展望了该技术的发展与应用拓展方向。
超分辨显微成像 微球透镜 成像视场 图像拼接 super-resolution microscopic imaging microspheric lens field of view image stitching 
红外与激光工程
2022, 51(6): 20210438
作者单位
摘要
1 南京理工大学 电子工程与光电技术学院, 江苏 南京 210094
2 南京理工大学 自动化学院, 江苏 南京 210094
受衍射极限的影响, 传统光学显微镜的分辨率最高约为波长的一半, 突破衍射极限, 获得更高的成像分辨率是近年来显微成像领域的研究热点。相比于其他超分辨显微成像方式, 基于微球透镜的超分辨显微成像方式具有简单直接、免标记等优点。主要介绍国内外研究团队将微球与传统的光学显微镜结合实现超分辨显微成像的研究进展, 从微球透镜参数选择、成像方案、成像分辨率、成像视场及成像机理等多角度进行总结与比对; 并结合课题组工作, 介绍了将微球透镜与干涉显微技术相结合的三维超分辨检测技术, 阐述了Linnik型与Mirau型两种检测光路原理, 分析了三维超分辨检测的效果; 展望了微球透镜超分辨显微技术在显微成像与显微干涉检测两个方面待解决的问题与发展方向。
微球透镜 衍射极限 光子纳米喷射 倏逝波 干涉显微 超分辨成像 microsphere lens diffraction limit photon nanojet evanescent wave interference microscopy super-resolution imaging 
应用光学
2019, 40(6): 1139
作者单位
摘要
苏州大学 江苏省先进机器人技术重点实验室&苏州纳米科技协同创新中心, 江苏 苏州 215021
微球透镜配合传统光学显微镜可以采集到衍射极限以下的超分辨光学图像, 为了精确控制微球透镜在样品表面的位置, 同时扩大超分辨成像范围, 提出了一种控制微球透镜的方法, 结合多轴微动平台实现微球透镜的精确定位与成像扫描操作。通过光学仿真分析了微球透镜超分辨成像效果, 并对精密微动平台进行了运动学分析。为了提高超分辨成像效果, 将微球透镜浸没于液体介质中, 并对在液体中运动的微球透镜进行力学分析。通过实验, 清晰分辨出130 nm(~λ/4)的蓝光光碟条纹间隙, 证明了微球透镜具有超分辨成像能力, 结果表明, 微球透镜可以在传统光学显微镜的基础上进一步提高约3.52倍的放大倍数。通过控制微球透镜以5×10-6 m/s的速度在液体中按“S”型轨迹移动, 实现了对一个视场内样品的超分辨成像, 此控制方法可以精确控制微球透镜的运动, 通过扫描的方式可以扩大微球透镜的观测范围, 提高观测速度。
超分辨成像 微操作 微球透镜 super-resolution imaging micro-manipulation microsphere 
光学 精密工程
2018, 26(5): 1106
作者单位
摘要
北京大学纳米器件物理与化学教育部重点实验室, 北京 100871
受衍射极限的限制,传统光学显微镜的分辨率只能达到入射光波长的一半。超分辨显微镜已有很多,但制作工艺复杂,适用样品有限,对成像条件要求苛刻,因此应用受到很多限制。研究表明,将直径为几微米至几十微米的透明电介质微球置于样品表面,能显著提高传统光学显微镜的分辨能力,在白光下即可实现超分辨成像,与其他类型显微镜结合使用时也能保持超分辨能力。这种新型透镜为纳米结构和生物样本的实时超分辨成像提供了一种简单、直接的方式。结合本课题组研究结果,介绍并总结了国内外微球透镜的研究进展。
成像系统 超分辨成像 微球透镜 光子纳米喷射效应 生物成像 
激光与光电子学进展
2016, 53(7): 070003
作者单位
摘要
1 中国科学院,长春光学精密机械与物理研究所,激发态物理重点实验室,吉林,长春,130033
2 吉林大学,物理学院,吉林,长春,130023
3 中国科学院,长春光学精密机械?胛锢硌芯克?激发态物理重点实验室,吉林,长春,130033
根据大功率半导体激光二极管列阵与光纤列阵耦合方式,分别从理论和实验两方面讨论、分析了大功率半导体激光二极管列阵与微球透镜光纤列阵耦合.将19根芯径均为200 μm的光纤的端面分别熔融拉锥成具有相同直径的微球透镜,利用V形槽精密排列,排列周期等于激光二极管列阵各发光单元的周期.将微球透镜光纤列阵直接对准半导体激光二极管列阵的19个发光单元,精密调节两者之间的距离,使耦合输出功率达到最大.半导体激光二极管列阵与微球透镜光纤列阵直接耦合后,不仅从各个方向同时压缩了激光束的发散角,有效地实现了对激光束的整形、压缩,而且实现30 W的高输出功率,最大耦合效率大于80%,光纤的数值孔径为0.16.
微球透镜光纤列阵 光纤耦合 激光二极管列阵
?掷嗪牛?/strong>TN818  文献标识
 
红外与激光工程
2006, 35(1): 86

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!