作者单位
摘要
1 北京空间机电研究所 先进光学遥感技术北京市重点实验室, 北京 100094
2 南京航空航天大学 航天学院, 南京 211106
3 中科院南京天文仪器有限公司, 南京 210042
研制基于楔板型分束镜的可见-红外光同步成像望远镜系统,通过优化设计分束镜楔角,抑制反射可见光鬼像产生,校正透射红外波段像差,实现对可见光波段与红外波段同时成像。对望远镜系统进行像质检测,主次镜系统RMS为0.093λ(λ=6328nm),可见光支路RMS达到0.120λ,红外光路成像质量满足要求。该系统采用卡塞格林共光路,用楔形板实现对可见光到中红外波段光线同步成像,使得宽波段望远镜设计更加轻便的同时提升装置成像性能。
楔板分束镜 卡塞格林系统 鬼像 像差 wedge beam splitter cassegrain system ghost image aberration 
光学技术
2023, 49(2): 163
作者单位
摘要
1 上海理工大学光电信息与计算机工程学院,上海 200093
2 上海光学仪器研究所,上海 200093
研制了一种新型光谱感光仪,其特点是宽光谱 (340 nm~900 nm),大曝光面 (202 mm×90.5 mm),且面上具有多阶梯光强;制备具有 18级光密度值的高精密阶梯光楔板,每个台阶的光密度值误差不大于 0.01;根据光源的光谱特性镀制滤光膜,消除光栅二级光谱。自动控制采集系统采用 LabVIEW与 PLC一体机开发,水平方向采用光栅位移传感器构成闭环控制,波长定位偏差小于 0.05 nm;竖直方向采用线性补偿方法,高度位置偏差小于 0.05 mm。仪器能够自动测量光楔板上不同波长不同光强区域的单位面积光功率,用快门控制曝光时间,在宽光谱范围内对感光材料进行一次曝光。在显影定影后,用光密度计测量其光密度值,根据国标 (GB10557-89)绘制出感光材料某一确定光密度值的光谱灵敏度曲线。
光谱灵敏度 光密度 光谱 光强 阶梯光楔板 spectral sensitivity optical density spectrum light intensity step wedge 
光电工程
2019, 46(2): 180365
Author Affiliations
Abstract
1 中国科学院上海光学精密机械研究所 高功率激光物理联合实验室, 上海 201800
2 中国科学院大学, 北京 100049
In high power laser beam parameters measurement, attenuation scheme with high rate is key to far-field measurement. The far-field optical measurement system was analyzed and diameter of 95% encircled energy was used as important evaluation criterion of far-field measurement system. Measurement error of far-field optical measurement system and effect of attenuation with high rate on far-field measurement results were analyzed. Principle of attenuation scheme with high rate was established. By changing parameters of high attenuation rate in condition of single parallel plate, a pair of parallel plates and a pair of wedge flaps by Virtual Lab, influence of attenuation on the far-field measurement system was simulated and analyzed deeply. According to measurement system for f=3 000 mm and F=10, best attenuation scheme with high rate is designed. Diameter of 95% encircled energy of far-field image is 45.5 ?滋m, or 3.54 times of diffraction limitation.
高功率激光 远场测量 楔板 衰减 high power laser far-field measurement wedge flap attenuation 
Collection Of theses on high power laser and plasma physics
2016, 14(1): S106002
Author Affiliations
Abstract
1 中国科学院上海光学精密机械研究所 高功率激光物理联合实验室, 上海 201800
2 中国科学院大学, 北京 100049
In high power laser beam parameters measurement, attenuation scheme with high rate is key to far-field measurement. The far-field optical measurement system was analyzed and diameter of 95% encircled energy was used as important evaluation criterion of far-field measurement system. Measurement error of far-field optical measurement system and effect of attenuation with high rate on far-field measurement results were analyzed. Principle of attenuation scheme with high rate was established. By changing parameters of high attenuation rate in condition of single parallel plate, a pair of parallel plates and a pair of wedge flaps by Virtual Lab, influence of attenuation on the far-field measurement system was simulated and analyzed deeply. According to measurement system for f=3 000 mm and F=10, best attenuation scheme with high rate is designed. Diameter of 95% encircled energy of far-field image is 45.5 ?滋m, or 3.54 times of diffraction limitation.
高功率激光 远场测量 楔板 衰减 high power laser far-field measurement wedge flap attenuation 
Collection Of theses on high power laser and plasma physics
2016, 14(1): S106002
作者单位
摘要
西安飞行自动控制研究所, 陕西 西安 710065
对两个通光面均为超光滑表面的双面对称角度楔形镜的加工提出了一种新工艺方法, 并根据零件的特点对工艺方法进行了改进。利用组合楔板工装、粘接上盘等方式对零件进行成盘加工, 不仅使零件的角度、厚度得到了很好的保证, 而且还避免了光胶上盘对已加工表面的损伤, 使通光面的疵病、面形、粗糙度、一致性等指标有很大的改善, 超光滑表面粗糙度rms均优于0.2 nm (AFM测量), 表面疵病达到0级, 角度精度达到±15″, 一次交检合格率达到85%以上, 有效地解决了生产中的瓶颈问题。
楔形镜 组合楔板工装 超光滑表面 wedge mirror wedge plate combination tooling ultra smooth surface 
应用光学
2012, 33(6): 1123
作者单位
摘要
中国科学院上海光学精密机械研究所信息光学实验室, 上海 201800
为了实现对激光波面的等光程测试,设计了一个新颖的相移矢量剪切干涉仪。该干涉仪以马赫曾德尔结构为基础,为等光程干涉仪。通过在相干的两路光束中分别插入楔角方向正交放置的楔板实现矢量剪切;其中一块楔板分成两块(平板部分和楔板部分),楔板部分沿平板部分的表面移动,通过改变光程差来实现相移,2π相移所需的移动距离为几毫米的量级,该相移方法在相移精度控制上比较简单。文中还对楔板引入的横向剪切误差和相移误差进行了分析,最后给出了实验所得的一组相移干涉图。
光学器件 干涉仪 相移 矢量剪切 楔板 等光程 
光学学报
2006, 26(2): 269

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!