作者单位
摘要
桂林电子科技大学, 广西 桂林 541004
塑料产品除了在自然环境中可降解为微塑料污染环境之外, 还会产生挥发性有机物, 同样对环境造成巨大的污染和危害, 因此对塑料挥发物的测量就显得尤为重要。 目前传统挥发物的测量方法, 如环境质谱法和色谱法等, 存在测量过程复杂, 成本高, 无法实时测量等缺点, 因而需要一种快速有效的针对塑料挥发物的测量方法。 采用傅里叶变换红外光谱仪(Fourier transform infrared spectrometer, FTIR Spectrometer)结合怀特池对塑料挥发物进行测量, 但是由于抽取式傅里叶变换红外光谱仪本身灵敏度有限, 很难实现微量的塑料挥发物的测量, 所以针对这一问题, 尝试通过长光程气体池提高常规傅里叶变换红外光谱仪的灵敏度从而实现不同种类塑料挥发物的测量。 选取了5种塑料产品, 分别是低密度聚乙烯(LDPE), 高密度聚乙烯(HDPE), 聚乙烯(PE), 聚对苯二甲酸乙二醇酯(PET), 聚丙烯(PP), 利用光程长为20 m的怀特池结合傅里叶变换红外光谱仪实现了其中一些挥发物的光谱特征观测, 实验观察到所有种类的塑料在2个光谱波数段具有明显的光谱特征, 分别为800~850和1 050~1 150 cm-1。 除聚对苯二甲酸乙二醇酯(PET)外, 其余4种塑料挥发物在2 800~3 000 cm-1还存在明显的光谱吸收波段。 进一步又研究了不同温度条件下塑料产生的挥发物, 通过分析不同温度条件下的塑料产生的挥发物的红外光谱, 发现除低密度聚乙烯(LDPE)在两种温度条件下光谱差异较大外, 其他种类的塑料挥发物红外光谱差异较小。 该研究提出了一种新型的基于长光程FTIR的塑料挥发物的测量方法, 证实了其在塑料挥发物测量方面的有效性, 这种方法具有测量成本低, 可连续观测, 实时在线等优点, 为实现连续在线的塑料挥发物排放通量监测奠定了基础。
中红外 长光程气体池 塑料挥发物 快速检测 Mid-infraredspectroscopy Long optical path gas cell Plastic volatiles Fast measurement 
光谱学与光谱分析
2021, 41(10): 3039
作者单位
摘要
北京空间机电研究所,北京 100076
为了对大气环境红外甚高光谱分辨率探测仪进行全谱段高精度光谱定标,通过分析干涉型光谱仪的工作原理,对光谱漂移因子进行理论推导,发现通过有限光谱位置校正能实现全谱段光谱定标。采用了以波长计为基准,通过连续可调谐激光作为测试光源的光谱定标方法,并以高精度气体池系统进行交叉定标来验证定标精度。试验结果表明,通过测量光谱漂移因子来进行光谱定标的测试精度优于0.004 cm?1,满足高精度光谱仪定标需求,漂移因子能够应用于干涉型光谱仪光谱定标。
探测仪 光谱仪 波长计 气体池 sounder FTIR wavemeter gas cell 
应用光学
2020, 41(4): 723
作者单位
摘要
1 天津大学 精密测试技术及仪器国家重点实验室,天津 300072
2 天津职业技术师范大学 机电工程系,天津 300222
可调谐半导体激光吸收光谱(TDLAS)技术具有很高的选择性和灵敏度,能够实现污染区域环境中痕量氨气(NH3)的在线检测。影响TDLAS 系统测量精度的因素有很多,温度和压力是最基本的两个影响条件。首先介绍了TDLAS 原理和实验系统,然后研究了温度变化对检测结果的影响,温度在-10℃~50℃之间,使用空芯波导(Hollow Waveguide, HWG)气体池对浓度为50 ppm 的NH3 进行检测,得到其二次谐波光谱图,从图中可以得出在该温度范围内,NH3 二次谐波信号幅度随温度升高而减小。温度不变,气体池内压力从0 kPa 变化到100 kPa 时,二次谐波信号的幅度随着压力增加而减小。根据实验结果,给出了该系统的温度压力修正公式。修正后,50 ppm 的NH3在不同温度下的最大检测相对误差为-5.5%。对30 ppm 的NH3 长时间监测结果表明,修正后系统能够适应现场监测需求。
可调谐激光吸收光谱(TDLAS) 空芯波导(HWG)气体池 氨气检测 温度压力修正 tunable laser absorption spectroscopy (TDLAS) hollow waveguide (HWG) cell ammonia monitoring temperature and pressure correction 
光电工程
2015, 42(12): 0035

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!