王凡 1,2陈龙跃 2,3段丹丹 1,2,4曹琼 1,4[ ... ]蓝玩荣 5
作者单位
摘要
1 国家农业信息化工程技术研究中心,北京 100097
2 清远市智慧农业农村研究院,广东 清远 511500
3 农芯科技!广州"有限责任公司,广东 广州 510000
4 湖南农业大学,湖南 长沙 410125
5 江门市农业技术服务中心,广东 江门 5290000
茶是世界上最受欢迎的饮料之一, 而氮素(N)是影响茶叶品质的主要成分之一, 因此快速准确地估算N素含量至关重要。 由于测定N含量的化学方法繁琐耗时, 利用高光谱对茶鲜叶中N含量进行预测, 利用连续小波转换(CWT)提取的小波系数, 探究CWT不同分解层数对于N素含量的估测能力, 并讨论了不同波长选择算法所建模型的预测效果。 首先, 采集广东省英德市茶园的151个茶鲜叶样品高光谱数据, 将获得的原始光谱通过卷积平滑(SG)、 去趋势(Detrending)、 一阶导数(1st)、 多元散射校正(MSC)和标准正态变量变换(SNV)五种预处理方法进行预处理并作为参考。 其次, 采用连续小波对原始光谱进行初步处理生成多尺度小波系数, 并进行相关性分析, 分别利用连续投影算法(SPA)、 竞争性自适应加权采样法(CARS)和变量组合集群分析(VCPA)方法进一步优化CWT变换后光谱数据的变量空间, 最后, 以特征变量为输入使用PLSR建立了N素定量监测模型, 并对比不同尺度不同方法估算N素的效果。 结果表明, 连续小波分析方法可有效提升茶鲜叶光谱对N素含量的估测能力, 明显优于常规光谱处理方法。 经连续小波分解后, 对茶鲜叶N素的预测能力随分解尺度的增加整体呈逐步降低的趋势, 其中在1~6尺度连续小波变换后的光谱与茶鲜叶N素存在良好的相关性, 表明小尺度的连续小波分解可有效应用于茶鲜叶N含量的监测。 基于CWT(1)-VCPA方法建立的模型精度最高, 且变量数相比于全波段减少了99.34%, 其建模与预测R2达到0.95和0.90, 相比于传统光谱处理方法, 精度提升了11% , 证明CWT-VCPA可以有效降低光谱维度并大幅提升模型精度。 实现了茶叶N素含量的高效量化预测, 为评估茶叶的其他成分提供了可靠技术参考。
茶鲜叶 氮素 连续小波变换 高光谱 变量组合集群分析 Fresh tea leaves Nitrogen Continuous wavelet transform Hyperspectral Variable combination population analysis 
光谱学与光谱分析
2022, 42(10): 3253
作者单位
摘要
华北水利水电大学水利学院, 河南 郑州 450046
施用有机肥是改善土壤物理结构、 提升土壤肥力、 调控养分平衡的的有效手段之一, 但目前有机肥施用对农田有机质和氮素演化的影响尚不清楚。 研究了施入有机肥后土壤总有机碳(TOC)、 可溶性有机碳(DOC)、 无机氮含量的变化特征, 并利用三维荧光光谱分析了施加有机肥后土壤DOM光谱学特性的变化规律, 结合PARAFAC分析法分析了施加有机肥后不同时期土壤水溶性有机物(DOM)各组分相对含量的变化, 利用2D-COS技术分析各荧光组分随时间的变化顺序, 此外采用典型相关度分析法研究了DOM各组分相对含量与土壤氮素的响应关系, 以探究施入有机肥对土壤有机质和氮素演变的影响。 结果表明: ①施加有机肥提高了土壤总有机碳、 水溶性有机碳和硝态氮含量, 降低了铵态氮含量; ②土壤DOM三维荧光光谱图出现了A峰(UV类腐殖酸)、 M峰(UVA类腐殖酸)、 T峰(类色氨酸), PARAFAC分析结果显示试验土壤DOM主要由陆地源类腐殖酸(C1)、 典型类腐殖酸(C2)、 类色氨酸(C3)组成。 结果还显示, 施加有机肥能提高土壤C1, C2和C3组分的相对含量, 试验期间, 施加有机肥处理后土壤C1, C2和C3组分的相对含量均呈现先上升后下降的趋势, 第30 d达到最大值, 不同荧光组分随时间的变动顺序一般表现为C1和C2组分先增加, 然后C1和C2组合降解促进C3形成, 为简便起见, 可用C1(C2)↑→C3来描述。 类腐殖酸变动幅度较大, 施加有机肥对类腐殖酸促进作用更为显著; ③施加有机肥能提高土壤的生物可利用性, 降低土壤腐殖化程度。 试验期间, 施加有机肥后BIX值呈先上升后下降的趋势, 在第30 d达到最大值; HIX值呈先下降后上升的趋势, 在第30 d达到最小值。 BIX和HIX呈显著负相关(R2=0.732); ④C1, C2和C3相对含量与硝态氮呈正相关, 与铵态氮呈负相关, 且C1和C2组分的相对含量对硝态氮和铵态氮含量的影响较大。 综上所述, 合理施加有机肥可调控土壤有机质和氮素转化, 减少农田面源污染。
土壤有机肥 三维荧光光谱 二维相关光谱 水溶性有机物 氮素 Soil Organic fertilizer Three-dimensional fluorescence spectrum Two-dimensional correlation spectroscopy Dissolved organic matter Nitrogen 
光谱学与光谱分析
2022, 42(10): 3116
作者单位
摘要
1 太原理工大学测绘科学与技术系,山西 太原 030024
2 中国气象科学研究院固城生态与农业气象试验站,北京 100081
3 中国气象科学研究院郑州大学生态气象联合实验室,河南 郑州 450001
4 南京信息工程大学气象灾害预报预警与评估协同创新中心,江苏 南京 210044
植物生长状况是反映环境变化的重要指标, 在全球环境变化格局下, 研究多环境因子及交互作用对植物的影响尤为重要。 为探究植物光谱特征响应环境变化, 从而探究环境变化对植物生长状况的影响, 同时实现遥感对植物的监测, 该研究以东北地区优势树种蒙古栎为研究对象, 分析研究了不同光周期、 温度和氮沉降交互作用引起的蒙古栎展叶盛期冠层光谱反射特征变化。 基于大型人工气候室模拟试验, 设置3个温度, 3个光周期和2个氮沉降交互处理, 每个处理4个重复。 当蒙古栎进入展叶盛期时, 每个处理选择差异较小的三个重复, 使用FieldSpec Pro FR 2500型背挂式野外高光谱辐射仪测量光谱反射率。 对不同处理的蒙古栎冠层光谱反射率进行分析, 选取NDVI(归一化植被指数)、 Chl NDI(归一化叶绿素指数)和PRI(光化学反射指数)3个常用的光谱指数作为辅助分析, 同时计算一阶导数光谱以得到红边斜率、 红边位置、 红边面积等参数。 不同处理展叶盛期的蒙古栎光谱反射率趋势大体一致, 均符合植物特有的光谱反射特征, 在350~680 nm范围内有一个小的波峰, 680~750 nm反射率显著上升, 750 nm后进入反射平台。 结果表明: (1)光周期对于蒙古栎冠层的光谱反射率没有明显的影响; (2)增温会减小蒙古栎冠层在350~750 nm波段处的光谱反射率; (3)施氮会导致蒙古栎展叶盛期350~750 nm波段和750~1 100 nm波段处的光谱反射率降低; (4)增温和施氮的交互作用会显著减小蒙古栎的光谱反射率; (5)通过一阶导数光谱可清晰地指示植物的红边特征。 研究结果可为物候变化的监测与影响因素分析提供理论依据。
蒙古栎 温度变化 氮素 光周期 光谱反射率 Quercus mongolica Temperature change Nitrogen Photoperiod Spectral reflectance 
光谱学与光谱分析
2021, 41(9): 2924
王娇娇 1,2,*宋晓宇 1梅新 2杨贵军 1[ ... ]孟炀 1
作者单位
摘要
1 农业部农业遥感机理与定量遥感重点实验室, 北京农业信息技术研究中心, 北京 100097
2 湖北大学资源环境学院, 湖北 武汉 430062
水稻氮素含量的准确监测是稻田精准施肥的重要环节, 水稻叶片氮素含量发生变化会引起叶片、 冠层的光谱发射率发生变化, 高光谱遥感是目前作物氮素无损监测的关键技术之一。 以2018年—2019年湖北监利两年水稻氮肥试验为基础, 分别获取水稻分蘖期、 拔节期、 孕穗期、 扬花期、 灌浆期五个生育期水稻叶片和冠层两个尺度的高光谱反射率数据及对应的叶片氮素含量数据, 利用单波段原始光谱和一阶导数光谱的相关性分析、 高斯过程回归(GPR)等方法筛选水稻全生育期叶片及冠层尺度氮素敏感波段。 针对敏感波段, 利用单波段回归分析、 随机森林(RF)、 支持向量回归(SVR)、 高斯过程回归-随机森林(GPR-RF)、 高斯过程回归-支持向量回归(GPR-SVR)和GPR构建水稻氮素监测模型, 并进行精度对比, 以确定水稻叶片在各生育期的氮素估算最佳模型。 结果表明: GPR筛选的敏感波段符合水稻氮素含量及光谱变化的规律。 相同条件下, 叶片模型精度整体高于冠层模型。 相关性分析模型中, 叶片尺度原始光谱模型更好, 冠层尺度刚好相反, 冠层一阶导数光谱可以减弱稻田背景噪声的影响。 其中, 叶片最佳模型建模集R2为0.79, 验证集R2为0.84; 冠层最佳模型建模集R2为0.80, 验证集R2为0.77。 与相关性回归分析模型相比, 机器学习模型受生育期影响小(R2>0.80, NRMSE<10%)。 其中, RF比SVR更适合对GPR敏感波段建模, GPR-RF模型可以用1.5%左右的波段达到RF模型使用全部波段的精度。 五种方法中, GPR模型对生育期敏感度最低、 叶片及冠层尺度效果都很好(R2>0.94, NRMSE<6%)。 且与其他四种机器学习方法相比, GPR模型可有效提高冠层氮素含量估算的精度和稳定性(R2增加0.02, NRMSE降低1.2%)。 GPR方法可为筛选作物氮素高光谱敏感波段、 反演各生育期叶片及冠层氮素含量提供方法参考。
敏感波段 氮素 高斯过程回归 随机森林 支持向量回归 高光谱 Sensitive band Nitrogen Gaussian progresses regression (GPR) Random forest (RF) Support vector regression (SVR) Hyperspectral 
光谱学与光谱分析
2021, 41(6): 1722
冯帅 1曹英丽 1,2,*许童羽 1,2于丰华 1,2[ ... ]金彦 1
作者单位
摘要
1 沈阳农业大学信息与电气工程学院, 辽宁 沈阳 110161
2 沈阳农业大学辽宁省农业信息化工程技术中心, 辽宁 沈阳 110161
为提供一种高效、 快速和无损的粳稻叶片氮素含量反演方法, 以粳稻小区试验为基础, 利用高光谱技术和室内化学实验, 获取粳稻分蘖期、 拔节期和抽穗期三个生育期共280组叶片高光谱数据以及相对应的水稻叶片氮素含量数据, 分析不同施氮水平的粳稻叶片光谱特征, 采用随机青蛙算法(random_frog)与迭代和保留信息变量算法(IRIV)相结合的方式筛选特征波段, 并将任意两个光谱波段随机组合构建差值植被指数DSI(Ri, Rj)、 比值植被指数RSI(Ri, Rj)和归一化植被指数NDSI(Ri, Rj), 分别将较优的特征波段组合和植被指数组合作为模型输入, 构建BP神经网络、 支持向量机(SVR)和非支配的精英策略遗传算法优化极限学习机(NSGA2-ELM)粳稻叶片氮素含量反演模型, 并对模型进行验证分析。 结果表明: 随着施氮水平的增加, 粳稻叶片近红外波段范围反射率逐渐升高, 在可见光波段范围反射率逐渐降低。 采用random_frog与IRIV相结合的方式筛选特征波段共得到8个特征波段, 其中可见光波段7个, 分别为414.2, 430.9, 439.6, 447.9, 682.7, 685.4和686.3 nm, 近红外波段仅有1个为999.1 nm, 该方法较好地剔除了干扰信息, 大大降低了波段间的共线性。 同时从三种植被指数(DSI(Ri, Rj), RSI(Ri, Rj), NDSI(Ri, Rj))与粳稻叶片氮素含量的决定系数等势图中可知, DSI(R648.1, R738.1), RSI(R532.8, R677.3)和NDSI(R654.8, R532.9)与叶片氮素含量相关性最好, R2分别为0.811 4, 0.829 7和0.816 9。 在输入参量不同的建模效果对比分析中, 以特征波段组合作为模型输入所构建的模型反演效果略优于植被指数组合, R2均大于0.7, RMSE均小于0.57。 而在反演模型间的对比分析中, 提出的NSGA2-ELM反演模型的估测效果要优于BP神经网络模型和SVR模型, 训练集决定系数R2为0.817 2, 均方根误差RMSE为0.355 5, 验证集R2为0.849 7, RMSE为0.301 1。 鉴于此, random_frog-IRIV筛选特征波段方法结合NSGA2-ELM建模方法在快速检测粳稻叶片氮素含量中具有显著优势, 可为粳稻田间精准施肥提供了参考。
高光谱数据 叶片氮素含量 特征波段 植被指数 反演模型 Hyperspectral data Leaf nitrogen content Characteristic band Vegetation index Inversion model 
光谱学与光谱分析
2020, 40(8): 2584
冯帅 1许童羽 1,2于丰华 1,2陈春玲 1,2[ ... ]王念一 1
作者单位
摘要
1 沈阳农业大学信息与电气工程学院, 辽宁 沈阳 110161
2 沈阳农业大学辽宁省农业信息化工程技术中心, 辽宁 沈阳 110161
为探究遥感监测水稻冠层叶片氮素含量的较优高光谱反演模型, 以水稻小区试验为基础, 获取了不同生长期水稻冠层高光谱数据。 在综合比较一阶导数变换(1-Der)、 标准正态变量变换(SNV)和SG滤波法等处理方法基础上, 提出一种将SNV与一阶导数变换的SG滤波法相结合的光谱处理方法(SNV-FDSGF), 并将处理后的数据经无信息变量消除法(UVE)与竞争自适应重加权采样法(CARS)选出不同生长期的敏感波段。 将各生长期的敏感波段两两随机组合, 并构建与水稻叶片含氮量相关性较高的差值光谱植被指数(DSI)、 比值光谱植被指数(RSI)、 归一化光谱植被指数(NDSI)。 其中分蘖、 拔节和抽穗3个时期的最优植被指数和决定系数R2分别为: DSI(R857, R623), 0.704; DSI(R670, R578), 0.786; DSI(R995, R508), 0.754。 以各生长期内的较优的三种植被指数作为输入分别构建自适应差分优化的极限学习机(SaDE-ELM)、 径向基神经网络(RBF-NN)以及粒子群优化的BP神经网络(PSO-BPNN)反演模型。 结果表明: SaDE-ELM建模效果最好, 在模型稳定性和预测能力上比RBF-NN和PSO-BPNN都有了明显提高, 各生长期反演模型的训练集和验证集决定系数R2均在0.810以上, RMSE均在0.400以下, 可为东北水粳稻冠层叶片含氮量的检测与评估提供科学和技术依据。
水稻 氮素 无人机 高光谱处理 植被指数 反演模型 Rice Nitrogen Unmanned aerial vehicle Hyperspectral processing Vegetation index Inversion model 
光谱学与光谱分析
2019, 39(10): 3281
作者单位
摘要
农业农村部植物营养与肥料重点实验室, 中国农业科学院农业资源与农业区划研究所, 北京 100081
为了明确不同生育时期进行玉米氮素营养诊断的叶片层位, 建立准确稳健的玉米氮素营养诊断模型, 以达到合理追施氮肥, 提高氮肥利用率的目的。 试验采用单因素盆栽试验设计, 以玉米(郑单958)为研究对象, 应用高光谱技术, 分析了不同氮营养水平下不同生育时期不同层位玉米叶片的氮含量分布和变化规律及光谱响应特征; 并依据叶片氮含量与光谱反射率的相关关系, 叶片氮含量与全波段(400~2 000 nm)任意两两波段组合构建的比值光谱指数(RSI)的回归关系, 初步确定了不同生育时期进行氮素营养高光谱诊断的目标叶片, 筛选出最优的比值光谱指数, 建立了叶片氮素含量估算模型。 结果表明: 玉米叶片氮含量: 上层>中层>下层; 随着玉米的生长, 在低氮条件下上层叶片氮含量呈先减少后增加(追肥)再减少趋势, 在高氮条件下呈减少趋势, 中下层叶片氮含量呈递减趋势。 六叶期下层玉米叶片光谱反射率敏感范围较大, 相关性较强; 九叶期和灌浆期上层玉米叶片的光谱反射率敏感范围较广, 相关性较强; 开花吐丝期中层叶片的光谱反射率敏感范围较大, 相关性较强。 六叶期选取下层叶作为诊断目标叶, 选取最佳比值光谱指数RSI(1 811, 1 842)建立线性估算模型, 九叶期和灌浆期选取上层叶片作为诊断目标叶, 选取的最佳比值光谱指数分别为RSI(720, 557), RSI(600, 511)建立线性估算模型, 开花吐丝期选取中层叶片作为诊断目标叶, 选取比值光谱指数RSI(688, 644)建立线性估算模型。 研究结果可为快速准确地利用光谱技术进行玉米叶片氮素营养诊断提供理论依据。
玉米叶片 氮素含量 光谱指数 分层诊断 Maize leaf Nitrogen Content Spectral index Diagnosis layer 
光谱学与光谱分析
2019, 39(9): 2829
裴信彪 1,2,*吴和龙 1,2马萍 1,2严永峰 3[ ... ]白越 1
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春130033
2 中国科学院大学, 北京 100039
3 吉林省农业科学院 水稻研究所, 吉林 公主岭 136100
卫星遥感空间分辨率低且易受大气、云层、雨雪等因素的影响。本文使用共轴十二旋翼无人机搭载光谱仪构成农情遥感系统。首先, 给出自主设计的无人机结构和飞行控制系统, 围绕飞行平台、控制系统、遥感载荷构建了多环节数据备份的无人机遥感数据采集系统; 然后, 试验测试4种施氮水平水稻的光谱指数变化规律; 最后, 通过试验数据分析可得: 在可见光区水稻冠层光谱反射率随氮素水平增加而减小, 在近红外区, 光谱反射率一开始随氮素水平增加而增大, 但氮素水平增大到一定程度后再增加氮素导致反射率降低。在4种氮素水平下, 水稻植被指数 RVI和NDVI由分蘖期到拔节期先增大, 然后至抽穗期又逐渐减小, 且抽穗期RVI和NDVI值小于其分蘖期RVI和NDVI值。试验表明以多旋翼无人机为平台搭载光谱仪器构成农情遥感监测系统用于反演作物植被指数方面是可行的。本文设计的无人机遥感数据采集系统能够有效、实时获取遥感信息, 其获取的高空间分辨率和光谱分辨率的农田实时信息能够为作物长势的分析、健康状况的监测提供必要的数据支持。
无人机 数据采集 水稻植被指数 氮素 unmanned aerial vehicle multi link data backup data acquisition rice vegetation index nitrogen 
中国光学
2018, 11(5): 832
张亚坤 1,2,3,*罗斌 2,3潘大宇 2,3宋鹏 2,3[ ... ]赵春江 1,2,3
作者单位
摘要
1 东北农业大学电气与信息学院, 黑龙江 哈尔滨 150030
2 北京农业智能装备技术研究中心, 北京 100097
3 国家农业智能装备工程技术研究中心, 北京 100097
氮素与作物的生长发育、 产量和品质密切相关。 作物冠层氮素含量的快速、 准确、 无损检测对于作物营养诊断和长势评估具有重要意义。 传统的氮素检测方法检测周期长、 操作复杂, 同时具有破坏性, 无法实现作物氮素含量在时间和空间上的连续动态监测。 基于光谱遥感技术快速、 无损地获取作物氮素含量是近年来作物组分快速检测研究的热点。 当前的研究大多基于原始光谱或整数阶微分(一阶、 二阶)预处理后的光谱进行氮素含量预测, 原始光谱或整数阶微分预处理后的光谱会忽略光谱曲线间的渐变信息, 影响氮素含量的预测准确度。 与原始光谱和整数阶微分方法相比, 分数阶微分算法在背景噪声去除、 有效信息提取等方面较有优势。 为研究分数阶微分预处理算法在作物氮素检测中的应用, 本文以不同施肥处理下的盆栽大豆作物为研究对象, 获取大豆苗期、 花期、 结荚期和鼓粒期四个生育期共256组冠层高光谱及对应的大豆冠层氮素含量(CNC)数据, 运用分数阶微分算法对光谱数据进行0~2阶微分预处理, 微分间隔为0.1, 分别采用归一化光谱植被指数NDSI、 比值光谱指数RSI对预处理后的光谱数据和大豆冠层氮素含量数据进行相关性分析, 得到各阶微分预处理下NDSIα(α代表分数阶微分阶数)与大豆CNC, RSIα与大豆CNC相关系数绝对值的最大值及其对应的波段组合——最优波段组合NDSIα(opt)和RSIα(opt), 采用线性回归方法, 建立各阶微分下NDSIα(opt)与CNC, RSIα(opt)与CNC的预测模型, 并与常用植被指数(VOGII, MTCI, DCNI, NDRE)建立的氮素含量预测模型进行比较, 研究分数阶微分算法对大豆作物冠层氮素含量预测模型的效果。 结果表明: (1)在0~2阶微分范围内, 最优波段组合NDSIα(opt), RSIα(opt)与大豆CNC的相关系数随阶数增加呈现先升高后下降趋势。 其中, 0.8阶微分下NDSI0.8(R725, R769)与大豆CNC的相关系数最大, 为0.875 9; 0.7阶微分下RSI0.7(R548, R767)与大豆CNC的相关系数最大, 为0.865 1; (2)分数阶微分预处理能够细化光谱数据中的有效信息, 增强光谱数据对冠层氮素含量的敏感性, 尤其是增强红边平台波段与氮素含量的正相关性及绿波段与氮含量的负相关性; (3)与整数阶微分、 常用植被指数相比, 分数阶微分能够提高大豆CNC预测模型的准确性。 其中, 基于0.7阶微分RSI0.7(R548, R767)建立的大豆CNC预测模型与0阶微分RSI0(R725, R769)相比建模集决定系数(R2C)和预测集决定系数(R2P)分别提高了0.061 9和0.016 6, 建模集均方根误差(RMSEC)和预测集均方根误差(RMSEP)分别降低了0.552 5和0.180 9, 预测相对偏差(RPD)提高了0.110 4。 基于0.7阶微分RSI0.7(R548, R767)建立的大豆CNC预测模型与VOG II相比R2C和R2P分别提高了0.086 6和0.025 5, RMSEC和RMSEP分别降低了0.757 5和0.248 3, RPD提高了0.146 88; (4)基于0.7阶微分比值光谱指数RSI(R548, R767)建立的大豆LNC预测模型较优, 其R2C为0.748 4, R2P为0.800 3, RMSEC为4.752 9, RMSEP为3.511 1, RPD为2.253 7, 能够较好的估测大豆冠层氮素含量。 研究表明分数阶微分算法在大豆冠层氮素含量的定量预测中具有一定的优势, 为光谱遥感技术在作物氮营养检测中的应用开拓了新的思路。
冠层氮素含量 高光谱数据 植被指数 分数阶微分算法 Canopy nitrogen content Hyperspectral data Vegetation indices Fractional order differential algorithm 
光谱学与光谱分析
2018, 38(10): 3221
作者单位
摘要
山西农业大学农学院, 山西 太谷 030801
为探明磷肥在旱地小麦生产上的作用, 寻求旱地小麦最佳施磷方式, 在山西省闻喜县进行了低磷(75 kg·hm-2)、中磷(112.5 kg·hm-2)、高磷(150 kg·hm-2)3个施磷量条件下20 cm、40 cm 2个深度施磷的田间试验, 研究其对旱地麦田土壤水分及植株氮素吸收、利用的影响。结果表明: 增加施磷量, 越冬期-孕穗期0~100 cm土层土壤蓄水量提高, 且深层施磷效果较好, 尤其有利于返青期土壤蓄水量提高。增加施磷量, 各生育时期植株含氮率提高, 各生育时期植株氮素积累量显著提高, 且深层施磷效果较好, 尤其开花期含氮率。增加施磷量, 花前各器官氮素运转量显著提高, 深层施磷叶片氮素运转量对籽粒的贡献率提高, 成熟期叶片氮素积累量及其所占比例显著降低。40 cm深度施磷150 kg·hm-2花后氮素积累量最高。此外, 越冬-孕穗期0~100 cm土层土壤蓄水量与花前氮素运转量关系密切, 尤其与叶片氮素运转量关系密切, 开花期土壤水分与花后氮素积累量关系系数最大。总之, 增加施磷量, 有利于提高花前1 m内土壤水分, 有利于促进植株氮素积累、运转, 且深层施磷效果显著, 尤其可促进叶片氮素转移到籽粒, 有利于开花期含氮率提高, 有利于花后氮素积累。最终, 40 cm深度施磷150 kg·hm-2可显著提高旱地小麦氮肥吸收效率、氮肥生产效率、氮素收获指数。
旱地小麦 深施磷肥 土壤水分 植株氮素积累特性 相关性 dryland wheat deep application of phosphorus fertilizer soil moisture plant nitrogen accumulation characteristics relevance 
激光生物学报
2016, 25(4): 371

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!