冉钰庭 1,2,3,*黄宏彪 1尹进 1,2朱健强 1,3
作者单位
摘要
1 中国科学院上海光学精密机械研究所 高功率激光物理联合实验室, 上海 201800
2 中国科学院大学, 北京 100049
3 上海科技大学 物质科学与技术学院, 上海 201210
基于印压断裂力学理论分析了磷酸二氢钾晶体表面缺陷面积与中位裂纹深度的关系.在刀具参量和主轴转数一定的情况下, 采用不同切削深度和进给速率对磷酸二氢钾晶体进行单点金刚石飞切加工实验, 并计算晶体表面单位面积缺陷的占比系数.实验结果表明, 晶体表面缺陷深度与面积占比系数成正相关, 与理论分析结果相符, 进而提出了利用计算晶体表面缺陷占比系数估测缺陷深度的方法.最后基于该方法得到高效率切削步骤, 并加工获得了表面粗糙度算术平均值优于5 nm的超光滑晶体表面.
非线性光学 缺陷深度估测 飞切加工 磷酸二氢钾晶体 高效率切削 Nonlinear optics Defect depth estimation Fly-cutting processing Potassium dihydrogen phosphate crystals High efficiency cutting 
光子学报
2017, 46(5): 0524001
张森 1,2,*张军伟 2李恪宇 2李志军 2[ ... ]周忆 1
作者单位
摘要
1 重庆大学机械工程学院, 重庆 400030
2 中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
约束方式和晶体温度是影响磷酸二氢钾(KDP)晶体性能的两个主要因素。晶体在约束条件下,温度的变化使晶体产生热应力和热形变,破坏晶体原有的相位匹配条件,从而致使谐波转换效率降低。为了获得约束条件下温度与晶体匹配角的关系,建立了约束条件下晶体匹配角热敏感性的分析方法。利用有限元分析法,计算约束条件下温度变化产生的热应力和热形变分布;将热光效应、弹光效应以及热形变引入到匹配角的计算之中,获得匹配角的变化规律。以神光Ⅲ原型装置采用的晶体约束方式对该方法进行了验证。结果表明,该方法计算得到的神光Ⅲ原型装置晶体在约束条件下三倍频效率与温度的关系符合效率变化的实际规律。
材料 磷酸二氢钾晶体 热敏感性 约束方式 温度 三倍频效率 
中国激光
2016, 43(7): 0703002
作者单位
摘要
大连理工大学 精密与特种加工教育部重点实验室, 辽宁 大连 116021
为了揭示磷酸二氢钾(KDP)晶体三倍频晶面微观弹塑性力学行为及加工性能, 开展了纳米压痕研究。建立了KDP晶体三倍频晶面各向异性力学模型, 基于光滑粒子流体动力学(SPH)方法对纳米压痕进行了数值仿真并完成了纳米压痕测试实验。实验结果表明: 实验与仿真计算的载荷-压入深度关系曲线的相关系数为0.996 328, 吻合度较高, 验证了力学模型的正确性, 得出KDP晶体三倍频晶面的屈服强度为240 MPa。数值仿真结果显示: 由于材料的各向异性, 工件内部应力呈不规则圆弧状分布; 载荷大小与等效应力影响深度呈近似线性递增关系; 材料表面等效塑性应变分布形状与压头投影面几何形状相类似, 存在复映效果。当载荷小于2 mN时, 各压头的残余应力深度差异性较小(小于0.2 μm); 随着载荷逐渐增大, 这种差异不断扩大。得到的结果为实现KDP晶体三倍频晶面的高效低损伤加工提供了理论支撑。
磷酸二氢钾晶体 三倍频晶面 纳米压痕 光滑粒子流体动力学 数值仿真 potassium dihydrogen phosphate(KDP) crystal tripler plane nano-indentation Smoothed Particle Hydrodynamics(SPH) numerical simulation 
光学 精密工程
2016, 24(2): 398
高慧 1,2,*孙洵 1刘宝安 1纪少华 1[ ... ]赵显 1
作者单位
摘要
1 山东大学 晶体材料国家重点实验室, 济南 250100
2 齐鲁师范学院 物理系, 济南 250013
用基于第一性原理的CASTEP模拟了Ba替代K缺陷前后形成的电子结构和能态密度。发现晶体能带宽度降至6.4 eV左右, 对应着380 nm的双光子吸收, 这一结果可以解释掺Ba晶体在紫外波段的吸收现象。Ba替代K点缺陷仅使其周围的晶格及电子结构发生轻微畸变, 对晶体整体结构影响不大。
磷酸二氢钾晶体 点缺陷 紫外光吸收 光损伤 KDP crystal Ba Ba point defect absorption in ultraviolet region laser induced damage 
强激光与粒子束
2011, 23(5): 1370

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!