作者单位
摘要
1 重庆理工大学光纤传感与光电检测重庆市重点实验室, 重庆 400054
2 重庆理工大学药物化学与分子药理学重庆市重点实验室, 重庆 400054
H9N2亚型禽流感病毒(AIV)虽为低致病性AIV,但严重危害养禽业的健康发展和公共卫生系统。快速有效的检测方法有利于病毒的早期诊断、预防及控制。提出一种高特异性、低检测极限(LOD)的纳米二氧化钛(nano-TiO2)粒子修饰双峰谐振长周期光纤光栅(DR-LPFG)的检测H9N2 AIV的光学生物传感器。利用改性nano-TiO2粒子修饰DR-LPFG,再将抗H9N2单克隆抗体分子(anti-H9N2 MAbs)与TiO2表面羧基以共价键结合,固定于光栅表面制得生物传感器。该传感器机理在于测量固定在DR-LPFG表面的anti-H9N2 MAbs与H9N2 AIV抗原的特异性结合引起光栅双峰谐振波长间距(Δλ)的变化。实验结果表明:在折射率为1.3320~1.3760时,nano-TiO2修饰DR-LPFG的Δλ灵敏度为~1063.44 nm/RIU(RIU为折射率单位)。该生物传感器对H9N2 AIV的LOD为~2.7 ng/mL,相较采用Eudragit L100共聚物修饰DR-LPFG的生物传感器的LOD,提高了约96.1%,检测饱和浓度为50 μg/mL,对H9N2 AIV的亲和系数为~3.57×10 8 mol -1·L,对H9N2 AIV具有高特异性,且能实现快速检测,在临床诊断、药物分析等生物医学领域有较大应用潜力。
光纤光学 光纤生物传感器 长周期光纤光栅 双峰谐振 纳米二氧化钛粒子 H9N2亚型禽流感病毒 
光学学报
2022, 42(1): 0106001
作者单位
摘要
重庆理工大学光纤传感与光电检测重庆市重点实验室, 重庆 400054
提出一种基于氧化石墨烯包裹金纳米壳(EGO-AuNS)修饰长周期光纤光栅(LPFG)的新型免疫传感器,并将其应用于禽流感病毒(AIV)检测。利用静电结合原理将石墨烯(GO)包裹在金纳米壳(AuNS)表面形成EGO-AuNS复合材料;采用硅烷偶联剂以共价键结合方式将其固定在LPFG表面;再以AIV单克隆抗体(AIV-MAbs)为特异性生物分子识别单元,固定于光栅表面构成EGO-AuNS-LPFG免疫传感器。结果表明:在折射率(RI)1.333--1.411范围内,EGO-AuNS-LPFG传感器RI灵敏度高达-66.60 nm/RIU,约为普通LPFG传感器的6倍。通过对不同浓度等级AIV抗原溶液的检测,表明该免疫传感器的检测极限约为8 ng/mL,饱和点约为50 μg/mL,在其线性响应区域的检测灵敏度约为2946.25 pm/(μg·mL -1),约为基于GO涂覆包层腐蚀型普通LPFG的AIV免疫传感器灵敏度的7.3倍;此外,其对AIV分子的解离系数约为3.49×10 -9 mol/L。通过对几种尿囊液的对照检测实验,表明该免疫传感器且具有良好的特异性和临床性有效性,因此它在生物医学领域有较大应用潜力。
光纤传感 长周期光纤光栅 氧化石墨烯包覆金纳米壳 禽流感病毒 免疫检测 
光学学报
2020, 40(18): 1806001
作者单位
摘要
1 重庆理工大学 光纤传感与光电检测重庆市重点实验室, 重庆 400054
2 重庆理工大学 药物化学与分子药理学重庆市重点实验室, 重庆 400054
3 重庆能源职业学院, 重庆 402247
提出了一种使用基于氧化石墨烯修饰包层腐蚀型长周期光纤光栅应用于检测禽流感病毒的免疫传感器.氧化石墨烯通过氢键结合在包层腐蚀型长周期光纤光栅表面上,并通过共价键将禽流感病毒单克隆抗体与氧化石墨烯表面的羧基相结合.利用氧化石墨烯上吸附的禽流感病毒单克隆抗体与禽流感病毒抗原的特异性结合引起的长周期光纤光栅谐振波长变化进行检测.结果表明,该氧化石墨烯修饰包层腐蚀型长周期光纤光栅免疫传感器对禽流感病毒的检测极限为40 ng/mL,传感器的解离常数为~1.6×10-7 mol/L,检测范围为40 ng/mL~200 μg/mL.通过对禽流感病毒空白尿囊液、禽流感病毒尿囊液和新城疫病毒尿囊液进行检测,表明免疫传感器具有良好的特异性和临床性.该免疫传感器具有应用于禽流感病毒的快速和早期诊断的可能.
光纤传感 免疫传感器 长周期光纤光栅 氧化石墨烯 禽流感病毒 Fiber optic sensor Immunosensor Long period fiber grating Graphene oxide Avian influenza virus 
光子学报
2020, 49(1): 0106002
作者单位
摘要
湖南师范大学生命科学学院, 湖南 长沙 410081
流感病毒M2(基质蛋白2)是A型流感病毒的一个高度保守的蛋白。由于其免疫原性较弱, 本研究采用M2 DNA疫苗初免-蛋白加强的策略来考察M2的免疫保护效果。制备A/Chicken/Jiangsu/07 /2002(H9N2)流感病毒的M2 DNA疫苗以及经大肠杆菌表达的去除M2跨膜区的M2蛋白即sM2。以SPF级BALB/c小鼠为模型, 电击法免疫M2 DNA疫苗, 滴鼻法免疫sM2蛋白, 免疫间隔三周, 并于末次免疫后三周以致死量5LD50流感病毒H9N2攻击小鼠, 通过检测小鼠存活率、体重丢失率、肺部病毒滴度及IgG抗体水平等指标来评价免疫的保护效果。实验结果表明, 基于M2的疫苗采用DNA疫苗初免蛋白加强免疫二次的免疫程序能诱导较高的特异性抗体, 明显减轻小鼠流感病症, 提供完全的保护。
禽流感病毒 基质蛋白2 DNA疫苗 初免-加强策略 avian influenza virus matrix protein 2 DNA vaccine prime-boost strategy 
激光生物学报
2012, 21(5): 441
作者单位
摘要
1 上海交通大学生命科学与技术学院,上海市,200240
2 天津师范大学生物信息与药物开发研究所,天津市,300074
3 中国科学院上海生命科学院系统生物学重点实验室生物信息中心,上海市,200031
4 北京大学生物化学与分子生物学院,北京市,100871
分子模拟是一种描述和模拟分子和分子体系运动状态和性质的方法.随着电子计算机技术的飞速发展,分子模拟进入了一个前所未有的新时代.在此之前,人们只能通过机械模型和纸笔计算进行简单的分子模拟,现在通过利用电子计算机人们可以做更为复杂、更为全面的分子模拟.本文通过两个实例来简单阐述了分子模拟在生物化学中的应用.一则是通过模拟膦酰基氧化腈和丙乙腈的1,3偶极环加成反应过程,用密度泛函理论方法在B3LYP/6-31G(d,p)水平上解释了得到2:1的加成产物的现象,来解释1,3偶极环加成反应得到2:1加成产物的现象.一则是通过结构生物信息学的方法建立H5N1高致病性禽流感病毒蛋白的三维结构,模拟其与一些药物分子的相互作用,研究H5N1的活性中心.
分子模拟 3偶极环加成反应 H5N1高致病性禽流感病毒 1 
原子与分子物理学报
2007, 24(2): 316
作者单位
摘要
1 山西农业大学动物科技学院,山西,太谷,030801
2 山西省晋中市第二人民医院,山西,太谷,030801
采用鸡胚培养法探讨黄酮类化合物对禽流感H5N1亚型病毒的抑制作用.实验分三种给药方式:即直接作用、先感染病毒后用药和先加药后感染.第一种给药方式说明黄酮类化合物可以直接灭活H5N1病毒;第二种给药方式说明黄酮类化合物可通过抑制流感病毒唾液酶的活性,从而抑制病毒粒子的复制;第三种给药方式反映一定浓度的药物可以阻断病毒对细胞的吸附作用.结果表明,黄酮类化合物对禽流感病毒的预防及治疗均有显著效果.
黄酮类化合物 禽流感病毒 抑制作用 
激光生物学报
2007, 16(5): 632

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!