作者单位
摘要
长春理工大学 光电工程学院,长春 130022
针对薄壁结构零件在装配过程中由于装配状态变化存在的装配受力变形问题,结合数字孪生发展背景,提出一种激光跟踪、视觉测量、光纤监测多源系统融合的结构形态感知技术。首先,建立多源系统多站位坐标统一模型,实现坐标基准统一;其次,建立异构数据融合模型,完成光纤监测波长与空间点坐标异构数据统一,基于高斯过程实现多源数据融合,预测变形点云,实现产品结构形态感知;最后,以蒙皮薄壁结构为例,模拟装配变形实验。结果表明,融合方法所感知数据更好地反应实际变形,其平均相对误差为4.66%,绝对误差保持在0.016 mm。多源异构数据融合基于实测数据预测形变点云,可实现结构实时变形监测,从而简化视觉测量方式,提高了曲面信息保真度,为动态孪生模型构建提供新思路。
数字孪生 多源系统测量 异构数据融合 高斯过程回归 结构变形 Digital twin Multi-source system measurement Heterogeneous data fusion Gaussian process regression Structural deformation 
光子学报
2023, 52(2): 0211004
胡守伟 1,2,*张勇 1,2王跃飞 1,2王佑 1,2
作者单位
摘要
1 中国科学院国家天文台南京天文光学技术研究所,江苏 南京 210042
2 中国科学院天文光学技术重点实验室,江苏 南京 210042
随着天文科学日新月异的发展和对性能越来越高的天文望远镜的迫切需求,目前,国际上正在积极建设口径20 m~40 m量级的极大口径光学红外望远镜。这些望远镜为了实现更大口径,也面临着巨大的技术挑战。其中,为使望远镜达到光学设计要求,需要创新解决方案来满足足够的负荷分担要求。本文简单介绍了国际上极大望远镜主桁架结构及关键结构件的多种设计方法,分析了各种方案的优缺点,提出了一种新的轻量化钣金焊接结构的30 m中国未来巨型望远镜方案,并在此基础上进行了大量的有限元建模、优化和仿真分析。分析结果显示,望远镜指向天顶时,第一阶模态频率为2.3 Hz,结构最大变形为3.8 mm;而望远镜指向水平方向时,第一阶模态频率减小为2.1 Hz,结构最大变形为2.9 mm,满足了望远镜的相关技术要求,为我国未来巨型望远镜的研制提供了技术参考。

极大望远镜 主桁架结构 有限元分析 模态 结构变形 中国未来巨型望远镜 extremely large telescope main truss structure finite element analysis mode deformation Chinese Future Giant Telescope 
光电工程
2022, 49(6): 210402
作者单位
摘要
1 西安理工大学, 西安 710000
2 西安飞行自动控制研究所, 西安 710000
采用“位置+速度”传递对准方法,对机体结构变形、基准信息延迟两大因素影响天线相位中心(APC)处惯性测量单元(IMU)实时姿态精度的问题进行了仿真研究。明确了主、子惯导坐标系之间的转换关系; 获得了这两类因素对于传递对准后APC处子惯导实时姿态信息的影响规律。仿真表明: 该匹配算法不适用于机体动态挠曲变形幅值剧烈、变形频率高的情况; 此外, 基准信息延迟会严重影响“位置+速度”传递对准估计时间和精度性能。因此, 在上述两类因素影响严重时, 有必要采取结构变形补偿、延迟补救等措施。
合成孔径雷达 结构变形 信息延迟 传递对准 惯性测量单元 天线相位中心 synthetic aperture radar structural deformation delay of information transfer alignment inertial measurement unit antenna phase center 
电光与控制
2021, 28(11): 89
殷礼鑫 1,2刘智超 1,2,*刘春辉 1,2
作者单位
摘要
1 长春理工大学光电工程学院, 吉林 长春 130022
2 长春理工大学光电测控与光信息传输技术教育部重点实验室, 吉林 长春 130022
针对由应变场变化和环境载荷等因素引起的结构变形问题,设计了一种基于光纤光栅传感网络的自由曲面结构状态感知系统,提出了基于布拉格光栅(FBG)阵列测试数据的三维曲面重建算法。 通过ANSYS对曲面结构加载不同状态载荷,仿真分析了其应变场分布规律,在100 N时其最大形变量为0.243 mm,并根据应力场分布特性确立了FBG阵列的位置。搭建了曲面位置偏移及三维应力场分布的测试系统。实验结果表明,Handyscan测量数据与实际测量数据的绝对误差均保持在0.026 mm之内,说明三维重构曲面可以很好地反映实际曲面受应力后的面形变化,其变形曲面重构的FBG各测量点数据与Handyscan测量数据的相对误差均保持在6.67%之内,平均相对误差均小于4.53%。所得结果验证了系统的可行性。该测试技术可用于飞行器结构健康监测中蒙皮面形偏差监测及应力场分析。
光纤光栅 结构变形 三维重构 空间曲面结构 结构健康监测 
中国激光
2021, 48(24): 2406001
作者单位
摘要
中国电子科技集团公司光电研究院, 天津
针对校正激光光束的快反镜使用过程中, 残余光束辐照到镜座后导致镜座结构变形, 对系统造成的不利影响, 围绕镜座结构设计开展了针对性的研究。对镜座结构从选材到结构布局进行了详细分析, 提出了采用铝材料镜座结构。对镜座中间光束最密集处采用镂空设计的方法, 进一步提出了镜座采用SiC材料的设计方向。对设计后的铝材料镂空镜座结构进行了热分析计算, 验证了设计方法的可行性, 为类似快反镜镜座结构设计提供了新的设计思路。
快反镜 镜座 结构变形 热分析 fast steering mirror base structure deformation thermal analysis 
光电技术应用
2021, 36(3): 73
作者单位
摘要
1 中国科学院大学, 北京 100039
2 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
根据工程实践中大型结构三维角度变形的产生原因和测量需要, 对目前能实际应用到工程场合的光学小角度测量方法的研究现状进行了叙述和分析, 着重介绍了自准直法, 偏振光法、光源靶标法、莫尔条纹法、像形畸变法、摄影摄像测量法等, 对比各方法的特点, 探讨了光学三维角度变形测量技术面临的问题和未来的发展趋势。
角度测量 结构变形 光学方法 angle measurement structure deformation optical method 
光电技术应用
2014, 29(4): 69
作者单位
摘要
1 中国卫星海上测控部, 江苏 江阴 214431
2 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
为了解决运动载体(如车辆、船舶和飞机等)实时精密水平姿态测量的问题,基于液体自动水平原理,提出了采用“光学编码精密测角+惯性同步复示平台+水平误差检测工具”的水平姿态测量方案,并进行了码头船舶动态原理验证试验。结果表明,测量原理正确、有效、可行,试验设备与惯导设备的水平姿态的差分差值小于等于2.0″[均方根(RMS)值]。该方法可以为运动载体(例如各类军用**发射平台)实时提供高精度的水平姿态信息,并用于运动载体水平结构变形测量、惯导水平精度鉴定等。
测量 惯性导航 运动载体 水平姿态 结构变形 
光学学报
2013, 33(3): 0312001
作者单位
摘要
北京理工大学光电学院光电成像技术与系统教育部重点实验室, 北京 100081
极紫外光刻技术(EUVL)是半导体制造实现22 nm及其以下节点的下一代光刻技术。在曝光过程中,EUVL物镜的每一面反射镜吸收35%~40%的入射极紫外(EUV)能量,使反射镜发生热和结构变形,影响投影物镜系统的成像性能。基于数值孔径为0.3,满足22 nm技术节点的产业化EUV投影物镜,采用有限元分析(FEA)的方法研究反射镜变形分布,再将变形导入光学设计软件CODE V中,研究反射镜变形其对成像特性的影响。研究结果表明:当达到硅片的EUV能量为321 mW,产量为每小时100片时,反射镜最高升温9.77 ℃,通光孔径内的最大变形为5.89 nm;若采用相干因子0.5的部分相干光照明,变形对22 nm线宽产生6.956 nm的畸变和3.414%的线宽误差。
热和结构变形 成像性能 有限元方法 极紫外光刻 投影物镜 
光学学报
2012, 32(3): 0322005
作者单位
摘要
哈尔滨工程大学理学院光信息科学与技术系, 黑龙江 哈尔滨 150001
光子晶体光纤(PCF)具有很多特殊性质,这些性质强烈依赖其具体结构。由于光子晶体光纤制作过程复杂,容易造成各种变形,包括包层气孔的位置偏移或变形等,从而明显影响该光子晶体光纤的性能。选用商品保偏单模光子晶体光纤作为研究对象,改变了环绕中心石英芯的两个大空气孔之一的形状和尺寸。固定气孔尺寸和形状,改变其位置; 再固定其位置,改变一个大气孔的直径; 最后同时改变二者,分析其交叉影响。仿真结果显示当一个气孔变形或偏移后,光子晶体光纤的等效折射率、零色散波长、偏振拍长、导模模场形状等参数均发生变化,说明结构偏差对保偏光子晶体光纤性质有明显影响。
导波光学 光子晶体光纤 计算机仿真 保偏光纤 结构变形 
中国激光
2009, 36(4): 884

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!