作者单位
摘要
1 中国科学技术大学 纳米技术与纳米仿生学院, 合肥 230026
2 中国科学院 苏州纳米技术与纳米仿生研究所, 江苏 苏州 215123
设计了一种基于阳极键合的环形谐振器的制作方法,用以简化环形静电陀螺谐振器的制作工艺。采用(100)及(111)顶层硅的SOI,分别通过阳极键合工艺制作了硅基环形陀螺谐振器。分析了不同晶向下频率裂解的产生及对陀螺谐振的影响,同时通过仿真分析了晶向对双波腹与三波腹振型的影响程度。利用网络分析仪在真空腔内对器件进行扫频测试实验,得到了两种器件的幅频响应特性,讨论了双波腹与三波腹工作模态与晶向的关系。双波腹相对于三波腹更易受加工条件的影响,而相对的振动幅值更大。同时设计静电调谐的方法,解决了(111)晶向硅基双波腹存在的频率裂解较大的问题。
环形谐振器 阳极键合 静电调谐 DRG anode bonding electrostatic frequency tuning 
微电子学
2022, 52(3): 484
作者单位
摘要
凯盛科技集团有限公司,北京 100036
真空玻璃凭借保温隔热、降声降噪、轻薄以及抗结露等优异性能逐步应用于节能建筑、家用电器、交通、农业等领域。尤其在节能建筑领域,真空玻璃展现出广阔的发展前景。通过总结近年来的文献资料,本文回顾了真空玻璃的发展历史,系统介绍了真空玻璃研究基础和产业化技术取得的重大突破及产业化现状,重点描述了真空玻璃封接材料种类、真空玻璃封接技术研究进程及最新研究进展。最后,本文展望了真空玻璃封接材料和封接技术未来发展趋势,以期为高性能真空玻璃的基础研究和产业化应用提供一定的借鉴和参考。
节能玻璃 真空玻璃 封接材料 封接技术 阳极键合技术 energysaving glass vacuum glass sealing material sealing technology anode bonding technology 
硅酸盐通报
2022, 41(11): 3893
郝飞帆 1,2,*李孟委 1,2,3王俊强 1,2金丽 1,2
作者单位
摘要
1 中北大学 仪器与电子学院, 太原 030051
2 中北大学 前沿交叉学科研究院, 太原 030051
3 中北大学 南通智能光机电研究院, 江苏 南通 226000
根据MEMS光栅陀螺工作原理,对陀螺结构仿真,并进行了晶圆级陀螺制造。在ANSYS中建立陀螺结构模型,并进行仿真分析。仿真结果显示,其驱动模态为7 287 Hz,检测模态为7 288 Hz,频差为1 Hz,表明结构有高灵敏度。通过工艺设计,采用溅射、湿法腐蚀、深反应离子刻蚀、阳极键合等工艺成功制造了MEMS光栅陀螺。大气压下搭建的测试系统测得该陀螺的驱动模态为7 675 Hz,检测模态为7 703 Hz,与仿真结果相对误差为5.6%,验证了工艺的可行性。
MEMS光栅陀螺 晶圆级制造 阳极键合 MEMS grating gyroscope wafer-level manufacture anode bonding 
微电子学
2021, 51(2): 276
作者单位
摘要
1 上海交通大学 1. 微米/纳米加工技术国家级重点实验室
2 2. 微纳电子学系, 上海 200240
针对MEMS器件背面引线的需求, 提出了一种基于玻璃通孔(TGV)加工方法的10.16cm(4inch)圆片衬底的制备工艺流程。首先深硅刻蚀导电硅片, 然后将硅片和玻璃片阳极键合, 随后将键合后的玻璃-硅圆片经高温加热, 使玻璃填充至硅片中, 再依次研磨抛光玻璃-硅圆片的正面玻璃和背面硅, 直至硅与嵌入玻璃在同一平面, 最后得到了厚度为258μm的4inch圆片衬底, 其轮廓算术平均偏差、轮廓最大高度、微观不平度十点高度的平均值分别为13, 71和49nm。此外, 测得圆片中硅导通柱电阻率为0.023Ω·cm。
阳极键合 表面粗糙度 硅导通柱 TGV TGV anode bonding surface roughness silicon via 
半导体光电
2021, 42(4): 521
作者单位
摘要
上海交通大学 电子信息与电气工程学院 微纳电子学系, 微米/纳米加工技术国家级重点实验室, 薄膜与微细技术教育部重点实验室, 上海 200240
提出了一种新型的结构解耦四质量块陀螺仪的结构设计以及制备方法。采用梳齿电极的设计和推挽法消除了静电驱动力的二倍频分量, 并对折叠梁结构进行仿真分析和优化, 有效地实现了对驱动和检测模态的结构解耦。针对陀螺仪的结构, 设计了可行的工艺方案并进行实际加工, 采用SOI和阳极键合工艺, 最终制作出四质量块陀螺仪样品。仿真得到驱动和检测模态的谐振频率差为7Hz, 表明其结构的高度对称性。谐响应分析下陀螺仪最大位移为1290nm, 驱动框架最大位移差为60.75nm, 检测框架最大位移为305.24nm, 取得了理想的解耦效果。
结构解耦 四质量块 阳极键合 仿真分析 structure decoupling quadruple mass anode bonding SOI SOI simulation analysis 
半导体光电
2020, 41(2): 177
作者单位
摘要
中北大学仪器科学与动态测试教育部重点实验室, 山西 太原 030051
利用感应耦合等离子体深硅刻蚀机与阳极键合机,制备出了应用于芯片原子钟的碱金属气室。以AZ4620光刻胶为硅片掩模,研究了深硅刻蚀后硅表面的形貌特征,对比了不同结构下深硅刻蚀速率。经过阳极键合,获得了三明治结构的微碱金属气室,并检测其饱和吸收谱线。实验结果表明:制备出的微碱金属气室在温度为80 ℃条件下出现明显的饱和吸收现象。
原子与分子物理学 芯片原子钟 碱金属气室 饱和吸收 感应耦合等离子体 阳极键合 
激光与光电子学进展
2018, 55(4): 040201
作者单位
摘要
1 南京信息工程大学 1. 电子与信息工程学院
2 2. 江苏省大气环境与装备技术协同创新中心
3 3. 江苏省气象探测与信息处理重点实验室,南京 210044
阐述了一种利用阳极键合技术加工的光纤法布里珀罗MEMS压力传感器的工作原理,建立了考虑阳极键合产生的热应力作用下边界固支的圆膜受外加压力的薄膜形变量公式。利用有限元分析软件ANSYS对与玻璃环键合后实际结构中的膜片在压力作用下的挠度变化进行模拟,采用麦夸特(LevenbergMarquardt)算法对模拟结果进行拟合修正,曲线拟合度达99.99%,得到了键合后实际结构中硅膜在外加压力作用下的形变量拟合公式。修正公式的曲线与实际ANSYS模拟所得数据拟合曲线的误差小于0.01%。该研究对膜片型光纤压力传感器的结构参数设计和广泛应用具有重要的理论指导意义。
阳极键合 残余热应力 有限元分析 麦夸特算法 anode bonding residual thermal stress finite element analysis LevenbergMarquardt algorithm 
半导体光电
2017, 38(2): 212
作者单位
摘要
1 上海交通大学 电子信息与电气工程学院 微米/纳米加工技术国家级重点实验室, 薄膜与微细技术教育部重点实验室, 上海市北斗导航与位置服务重点实验室, 上海 200240
2 上海航天控制技术研究所 惯性工程技术研究中心,上海 201109
提出了一种新型的基于阳极键合的硅微圆盘多环谐振陀螺的结构设计及其制作方法。该种陀螺采用MEMS工艺制作而成,基底材料为肖特BF33玻璃,电极和谐振器均由单晶硅片加工而成,肖特BF33玻璃与单晶硅片通过阳极键合工艺键合在一起。介绍了该种陀螺的基本结构、工作原理,并进行了仿真分析,得出该种陀螺具有较小的频率分裂,表现出陀螺效应。最后,通过MEMS工艺进行了实际加工,得到了该种陀螺的实验样品。
阳极键合 圆盘多环谐振陀螺 MEMS工艺 anodic bonding disc resonator gyroscope MEMS technology 
半导体光电
2017, 38(2): 199
作者单位
摘要
苏州大学 机电工程学院&苏州纳米科技协同创新中心,江苏 苏州 215021
由于当前绝缘体上硅(SOI)压阻传感器芯片的封装质量仍依赖人工检测,本文提出了一种自动实现该项检测的视觉检测方法。分析了压阻传感器的工作原理, 研究了芯片定位精度和结合面质量对传感器性能的影响。以传感器性能和质量为导向,提出了一种以中心定位偏差和键合面结合度为检测点的封装结合面检测方法。该方法通过对Hough圆检测效果和实际图像的分析完成定位精度的检测; 基于对传感器质量影响因素的分析和气泡面积的统计实现结合面质量的检测。在传感器实际制造封装过程中对该视觉检测算法进行了实验验证。结果表明: 该方法能识别的结合面上的最小气泡直径为6 μm; 玻璃内孔半径检测误差约为0.015 mm.。本文提出的基于视觉检测的方法基本满足了压阻传感器封装对结合面检测的要求,有助于实现封装质量的自动化检测。
绝缘体上硅(SOI) 压阻传感器 芯片 封装质量 视觉检测 阳极键合 Silicon On Insulator (SOI) piezoresistive sensor chip packaging quality visual detection anodic bonding 
光学 精密工程
2016, 24(6): 1382
作者单位
摘要
中国科学院 电子学研究所 传感技术国家重点实验室 北京 100190
为了提高传感器的品质因数,有效保护谐振器,提出了一种基于绝缘体上硅(SOI)-玻璃阳极键合工艺的谐振式微电子机械系统(MEMS)压力传感器的制作及真空封装方法。该方法采用反应离子深刻蚀技术(DRIE),分别在SOI晶圆的低电阻率器件层和基底层上制作H型谐振梁与压力敏感膜;然后,通过氢氟酸缓冲液腐蚀SOI晶圆的二氧化硅层释放可动结构。最后,利用精密机械加工技术在Pyrex玻璃圆片上制作空腔和电连接通孔,通过硅-玻璃阳极键合实现谐振梁的圆片级真空封装和电连接,成功地将谐振器封装在真空参考腔中。对传感器的性能测试表明:该真空封装方案简单有效,封装气密性良好;传感器在10 kPa~110 kPa的差分检测灵敏度约为10.66 Hz/hPa,线性相关系数为0.99 999 542。
微电子机械系统 谐振式压力传感器 绝缘体上硅(SOI) 阳极键合 真空封装 Micro-electromechanical System (MEMS) resonant pressure sensor Silicon On Isolation(SOI) anodic bonding vacuum packaging 
光学 精密工程
2014, 22(5): 1235

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!