作者单位
摘要
1 深圳技术大学 工程物理学院,广东 深圳 518118
2 中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
利用时域有限差分算法(FDTD)对微纳结构靶的光场分布进行仿真模拟,探究微纳结构靶中的光传输机制,分析材料特性和结构参数对光传输特性和光场分布的影响。基于光场分布及演化的仿真模拟结果,对比半导体氧化铝、绝缘体二氧化硅和金属铜三种导电性不同的材料上纳米线和纳米孔阵列微纳结构靶的激光传输特性,分析光传输过程中的光场分布变化。研究结果表明,通过改变氧化铝和二氧化硅纳米孔(线)阵列结构靶中孔洞(纳米线)直径和间距等结构参数,可以实现对微纳结构靶中光传输特性和光场分布的调制,实现光场在介质材料和真空区域间的周期振荡分布,或是以一种稳定形态传输;激光在铜纳米孔阵列中传输时,透光性随孔洞半径的增加而增加。基于光场分布及演化的仿真模拟结果,对比不同材料、不同微纳结构靶的激光传输演化特性,给出物理图像及对应现象规律,根据光场调控需求,给出微纳结构靶设计。
纳米孔阵列结构 纳米线阵列结构 氧化铝 二氧化硅  光场分布 nanopore array target nanowaire array target Al2O3 SiO2 Cu optical distribution 
强激光与粒子束
2024, 36(3): 031002
作者单位
摘要
1 北京大学 集成电路学院, 北京 100871
2 北京微电子技术研究所, 北京 100076
3 西安交通大学 微电子学院, 西安 710049
微纳卫星对于载荷的苛刻要求使得太阳敏感器的微型化研究具有重要意义。为了解决光学器件和处理电路的集成兼容问题, 文章基于标准CMOS工艺提出一种新型片上太阳敏感器, 以金属走线层构建微型墙结构, 两侧均匀分布pn结构成光电传感器, 通过检测两侧光电流比例解算出入射光角度。文章从工艺实现、模型建立、数值仿真和实验测试等方面验证了器件的合理性和可行性。最终, 片上太阳敏感器阵列芯片质量为1.5g, 尺寸为304.2mm3, 检测精度为±1.6°, 视场范围为80°, 可满足微型化需求。
标准CMOS工艺 太阳敏感器 阵列结构 standard CMOS process sun sensor array structure 
半导体光电
2023, 44(1): 18
黄湘俊 1,*邸啸 1刘娅 2李鑫 1[ ... ]朱鑫 1
作者单位
摘要
1 联合微电子中心有限公司, 重庆 400060
2 中国电子科技集团公司第二十六研究所, 重庆 400060
该文介绍了一种由5×5个半径为200 μm圆形阵列组成, 应用于水听器的高性能压电微机电系统(MEMS)声波器件, 尺寸为3 mm×3 mm。采用钪掺杂(质量分数为20%)增强了AlN薄膜的压电系数, 并通过双电极结构配置及优化结构尺寸来增强声压作用下的电信号输出, 以实现压电MEMS声波器件具有更好的接收灵敏度。声波器件在空气中的接收灵敏度为-166.8 dB(Ref.1 V/μPa), 比相同结构基于AlN薄膜的声波器件约高2.6 dB。在50 Hz~3 kHz带宽范围内, 器件灵敏度曲线变化小于1.5 dB, 具有平坦的声学响应。结果表明, 基于Al0.8Sc0.2N薄膜的压电MEMS声波器件具有更高的接收灵敏度, 经水密封装制成的水听器可应用于管道泄漏探测及海洋噪声监测等工程中。
压电微机电系统(MEMS) 声波器件 Al0.8Sc0.2N薄膜 阵列结构 灵敏度 水听器 piezoelectric MEMS acoustic device Al0.8Sc0.2N film array structure sensitivity hydrophone 
压电与声光
2022, 44(3): 397
作者单位
摘要
大连理工大学运载工程与力学学部工程力学系,工业装备结构国家重点实验室,大连 116024
本文针对不同介质形成的周期性阵列结构进行了不同频率的波传输计算,发现波在阵列声子晶体结构中的传输特性与光在光子晶体中的自准直类似,具有波传播的自准直效应。进一步计算发现,波在声子晶体中传输的自准直特性与外部介质和阵列结构的材料属性密切相关,也与阵列结构单胞中金属柱的截面几何特性相关。波传播的自准直效应产生的频率范围随模量比的增加出现先增加后减小的现象,并且随密度比的增加而减小。设置合理的模量比、密度比等材料性质和截面几何性质,能够实现对阵列结构自准直效应中的波传播频率范围的控制,其中,等频线是周期性结构阵列自准直效应的重要设计依据。
声子晶体 阵列结构 波传输 自准直 等频线 phononic crystal arrayed structure wave transmission self-collimation equi-frequency contour 
人工晶体学报
2021, 50(7): 1371
汤桦 1,2李强 1,2,3,*张启凡 1,2张明殷 2[ ... ]云峰 2,3
作者单位
摘要
1 西安交通大学电子物理与器件教育部重点实验室, 陕西 西安 710049
2 西安交通大学电子科学与工程学院, 陕西 西安 710049
3 西安交通大学陕西省信息光子技术重点实验室, 陕西 西安 710049
为了提升氮化镓(GaN)基发光二极管(Light Emitting Diode,LED)的发光效率,设计工艺简单且成本低廉的领结型纳米银金属阵列,并将该结构集成于GaN基发光二极管的表面,在不破坏外延结构的情况下通过激发局域表面等离激元效应有针对性地提升不同波段发光二极管的光提取效率。利用时域有限差分法系统地模拟计算不同尺寸的领结型纳米银金属阵列在不同入射波长下对GaN基发光二极管光提取效率的影响,并通过实验进行验证。结果表明,在中心波长分别为370,425,525 nm的LED的表面集成最优尺寸的领结型纳米银金属阵列,其光致发光峰强度相比于无表面结构的LED分别提升71.1%、148.2%和105.9%。
光学器件 发光二极管 局域表面等离激元 纳米阵列结构 光提取效率 
光学学报
2021, 41(21): 2123001
作者单位
摘要
南京师范大学物理科学与技术学院, 江苏省光电技术重点实验室, 江苏 南京 210023
局域表面等离激元共振是金属纳米粒子表面的自由电子在光子作用下发生集体震荡而产生的一种共振现象。 提出了一种方体及环/盘阵列结构, 该结构主要由左侧单圆环和右侧方体及偏心圆环盘组成。 利用时域有限差分算法(FDTD solutions)对该结构进行了光学性质的探究。 仿真结果表明, 当线性偏振光入射到金属表面时, 在结构中激发局域表面等离子体共振现象, 表现出明显的共振效应, 在600~1 700 nm范围形成了不同位置的共振谷。 通过对结构电场电荷仿真图的对比分析, 发现共振谷是由圆环内所激发的偶极共振模式与方体及环/盘激发的四偶极共振模式相互耦合杂化产生的混合等离子共振而形成的。 当调整金属结构的各项参数时, 金属纳米颗粒之间的局域表面等离激元共振会因电场耦合效应发生改变, 因此法诺共振的产生对于金属结构的各项参数有着极大的依赖性(如左圆环直径L、 右圆环直径R, 结构高度H, 左圆环到方体的距离D等), 通过对结构各项参数的改变, 可以实现对结构共振谷波长位置和共振强度的有效调控, 达到对结构光学性质可控的目的。 由于该结构具有独特的非对称性, 进一步探究了入射光源偏振方向(即电矢量与x轴的夹角)对结构的共振谷波长位置以及共振强度的影响。 结果表明, 随着光源偏振角度的增加, 共振谷J2处的波长位置出现明显的红移现象。 但当偏振角度为90°时, 共振谷J3处不能产生法诺共振现象。 由此, 可以通过改变光源的偏振方向来实现对该结构的光谱的共振强度及共振波长位置的调控。 更为重要的是, 该结构对周围的环境折射率有着较高的敏感度, 最高可达755 nm·RIU-1, 传感的品质因数(figure of merit, FOM)为18.4, 该结构在环境折射率等生物传感器及微纳光子器件方面有着潜在的应用前景。
局域表面等离子体共振 法诺共振 阵列结构 折射率传感 Localized surface plasmon resonance Fano resonance Array structure Refractive index sensing 
光谱学与光谱分析
2020, 40(5): 1345
作者单位
摘要
1 长春理工大学 机电工程学院,吉林 长春 130022
2 盐城工学院 机械工程学院,江苏 盐城 224051
本文采用光纤激光器在不锈钢表面上制备圆形阵列结构来增强不锈钢与塑料的连接强度。研究了激光制备的圆形阵列结构参数以及连接参数对不锈钢与塑料连接强度的影响。结果表明,不锈钢表面经过激光扫描构形处理后能显著提高不锈钢与塑料的连接强度,在压力作用下,熔融塑料渗入激光构造微孔形成的机械互锁是增强不锈钢与塑料连接强度的主要机制。激光构形后不锈钢表面上的毛刺高度、数量以及覆盖率对连接接头的连接强度有重要影响。毛刺高度为10~20 μm,毛刺数量占比Tm小于14.82%时,不锈钢与塑料在连接面处断裂,剪切力随着Tm的增加而增加;当Tm值高于14.82%时,在塑料处断裂,且剪切力数值在塑料的平均拉伸断裂力(950 N)上下浮动。不锈钢与塑料连接接头断裂于塑料处时所对应的最小覆盖率为38.5%,此时剪切力为900 N。此外,激光扫描处理过程中不锈钢与塑料连接的温度与压力对连接强度有重要影响,在加热温度为400℃时,不锈钢与塑料连接接头的剪切力最强;当压力为75 kN时,不锈钢与塑料连接接头的剪切力最强。
激光加工 激光扫描构形 阵列结构 剪切力 laser processing scanning configuration array structure shear force 
中国光学
2020, 13(2): 313
作者单位
摘要
南京师范大学物理科学与技术学院, 江苏省光电技术重点实验室, 江苏 南京 210023
提出一种多圆孔周期性银膜阵列结构,并利用时域有限差分算法探究该结构的光学特性。计算结果表明,当线性偏振光入射时,该结构表面激发出表面等离激元,且纳米孔间产生了局部表面等离子体共振,使得该结构的异常透射增强。针对这一现象,通过对中心孔与边孔所呈角度、入射光偏振角度、结构参数(中心孔直径、边孔直径、结构厚度、边孔与中心孔的间距)的调控来实现结构光学透射属性的优化。此外,分析所提结构在不同环境折射率条件下透射峰的变化规律, 发现该结构也对周围的环境折射率具有较高的敏感度。因此该结构在表面等离激元滤波器和折射率传感器中具有广泛的应用前景。
传感器 周期性阵列结构 局部表面等离子体共振 表面等离激元 异常透射现象 
光学学报
2019, 39(1): 0104001
Author Affiliations
Abstract
南京大学固体微结构物理国家重点实验室现代工程与应用科学学院, 南京 210093
Surface plasmon polaritons (SPPs) have extensive application prospects in high-sensitivity biosensing because of their extraordinary optical properties. However, the large size and cost of prism-based plasmonic sensors limit their commercial applications. Fortunately, the emergence of metallic nanostructured sensors has provided an effective approach to realize low-cost and highly integrated plasmonic sensors. In this review, we first assess the current status and advantages of plasmonic nanostructured sensors, then focus on our group's recent research on their miniaturization, integration, and fabrication cost reduction. Our work is of significance for the development of both plasmonic sensing theory and nanostructured sensing technology.
表面等离子激元 纳米阵列结构 光学传感器 光学集成器件 生化传感 surface plasmon nanoarray structure optical sensor optical integrated devices biochemical sensing 
Journal of Semiconductors
2019, 48(1):
作者单位
摘要
1 广西师范大学 a.电子工程学院
2 广西师范大学 b.数学与统计学院,广西 桂林 541004
设计了褶皱石墨烯波导结构激发表面等离子体激元,通过设计周期阵列结构实现了表面等离子体激元传播损耗的补偿.理论分析了周期阵列结构的表面等离子体激元传播模型和补偿损耗的方式,结果表明褶皱衍射激发表面等离子体激元波导不仅能够激发表面等离子体激元,还能利用表面等离子体激元波矢关系实现器件参数控制,周期阵列增益全程补偿损耗的方式可以显著增加表面等离子体激元的传播距离.数值分析结果进一步表明:该结构具备了保持亚波长尺寸的强局域化优势;周期阵列增益全程补偿可以显著提高纳米腔中的电场强度,降低传输损耗;波导结构的粒子反转水平较高,自发辐射噪声的扰动较低.设计的石墨烯波导器件可以为微纳光学集成、光子传感和测量等领域提供理想的亚波长光子器件.
亚波长光学 表面等离子体激元 周期褶皱结构 周期阵列结构 纳米腔 Subwavelength optics Surface plasmon polaritons Cycle fold structure Periodic array structure Nanocavities 
光子学报
2016, 45(2): 0224003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!