刘勇良 1刘文玮 1程化 1,*陈树琪 1,2,3,**
作者单位
摘要
1 南开大学物理科学学院,泰达应用物理研究院,弱光非线性光子学教育部重点实验室,天津 300071
2 南开大学材料科学与工程学院,智能传感交叉科学中心,天津 300350
3 山西大学极端光学协同创新中心,山西 太原 030006
空间光学模拟计算具有大规模并行计算、低功耗和超快响应速度的信息处理优势,在图像处理、边缘检测和机器学习方面显示出巨大的应用潜力。本文回顾了空间光学模拟计算的发展,着重阐述了空间光学模拟计算结合超表面在不同理论模型及体系中的研究进展与应用,通过引入人工微结构替代传统大尺寸光学元件,推动空间光学模拟计算器件向微型化、集成化发展;总结了基于自旋轨道耦合、拓扑等物理效应的新型空间光学模拟计算最新进展,为实现超带宽高速信息处理提供了新思路;对空间光学模拟计算现有挑战和研究前景进行了分析和讨论。
空间光学模拟计算 空间微分器 傅里叶光学 超表面 光学自旋霍尔效应 
光学学报
2023, 43(16): 1623006
罗朝明 1,2,*唐鹏 2张勇 2万婷 2[ ... ]张景贵 1
作者单位
摘要
1 湖南第一师范学院物理与化学学院,湖南 长沙 410205
2 湖南理工学院信息科学与工程学院, 湖南 岳阳 414006
提出和实验论证了基于量子弱测量系统的高分辨氨基酸种类识别方案,并探究了分辨率的提升规律。该量子弱测量系统利用氨基酸溶液的旋光角充当系统的后选择角,将放大后的光自旋霍尔效应位移作为探针识别氨基酸的种类,通过改变入射角可以提升该系统对旋光角的分辨率。通过合理设计BK7-介质结构界面,使其分辨率比单纯BK7玻璃界面有两个数量级的提升,可达9.7×10-6°)/μm。这些研究将为氨基酸种类的高精度识别提供理论基础,并拓展量子弱测量的应用范围。
量子光学 量子弱测量 氨基酸种类 光自旋霍尔效应位移 
光学学报
2022, 42(22): 2227001
作者单位
摘要
1 东莞理工学院电子工程与智能化学院, 广东 东莞523808
2 华南师范大学信息光电子科技学院, 广东 广州510006
3 华南师范大学广东省微纳光子功能材料与器件重点实验室, 广东 广州510631
4 南京大学物理学院, 江苏 南京210093
5 合肥工业大学计算机与信息学院, 安徽 合肥230009
光束位移是指光束在反射或透射的过程中, 反射点或透射点会出现违反几何光学预言的小段偏移, 包括Goos-H nchen位移、Imbert-Fedorv位移、Goos-H nchen角位移和Imbert-Fedorv角位移。关于光束位移的研究随着科技的进步不断发展, 不仅丰富了人们对光的波动和量子本质的认识, 也进一步加深了对于新型材料的内在物理机制的了解, 从而促进人们向未知的物理世界展开探索。从光束位移的发现、理论解释等方面对其展开介绍并对其研究进展进行总结。
光束位移 Goos-H nchen位移 Imbert-Fedorv位移 Goos-H nchen角位移 Imbert-Fedorv角位移 光自旋霍尔效应 beam shift Goos-H nchen shifts Imbert-Fedorv shifts Goos-H nchen angular shifts Imbert-Fedorv angular shifts optical spin Hall effect 
光学与光电技术
2022, 20(4): 123
作者单位
摘要
湖南大学物理与微电子科学学院自旋光子学实验室, 湖南 长沙 410082
光的自旋-轨道相互作用是指光的自旋角动量和轨道角动量之间的相互作用, 它存在于反射、折射、散射、衍射、聚焦等基本的光学过程中。在传统大尺度量级的经典光学中可以忽略自旋-轨道相互作用的影响, 但在亚波长尺度下, 自旋和轨道角动量之间会发生强耦合。对光的自旋-轨道相互作用的基本起源和重要应用进行了综述。首先, 介绍了光的自旋-轨道相互作用的两个重要基本概念: 光子角动量和几何相位理论。其次, 分别介绍了自旋-内禀轨道角动量和自旋-外禀轨道角动量两种相互作用的基本原理。然后, 重点介绍了光自旋-轨道相互作用的研究进展以及代表性应用。最后, 对光自旋-轨道相互作用相关研究面临的挑战和未来的研究方向进行了展望。
光电子学 自旋-轨道相互作用 几何相位 光子自旋霍尔效应 量子弱测量 光学微分运算 optoelectronics spin-orbit interaction geometric phase photonic spin Hall effect quantum weak measurement optical differential operation 
量子电子学报
2022, 39(2): 159
作者单位
摘要
1 吉林大学超硬材料国家重点实验室,长春 130012
2 郑州大学材料物理教育部重点实验室,郑州 450052
金刚石是一种具有优异性能的极限性超硬多功能材料。人工合成的金刚石可通过掺杂的方式使其具有各种独特的性质。掺硼金刚石兼具p型半导体的导电特性和金刚石自身优良的物理和化学性能,在**、医疗、勘探、科研等领域具有极高的应用价值。本文基于本课题组高温高压(HPHT)法合成的系列掺硼金刚石以及硼协同掺杂金刚石单晶,进行了硼掺杂金刚石、硼氢协同掺杂金刚石以及硼氮协同掺杂金刚石的合成和性能特征等方面的研究。通过表征合成样品在光学、电学方面的性能,探讨了不同掺杂添加剂对合成金刚石性能的影响,为合成高性能的半导体金刚石提供了思路。
掺硼金刚石 高温高压 超硬材料 晶体生长 协同掺杂 霍尔效应 半导体金刚石 boron-doped diamond HPHT superhard material crystal growth co-doping Hall effect semiconductor diamond 
人工晶体学报
2022, 51(5): 830
作者单位
摘要
中山大学 物理学院 光电材料与技术国家重点实验室,广州 510275
拓扑光子学逐步成为重要的物理光学原理和方法,其光场调控的新颖方式引起了人们极大的兴趣。近年来人们借助拓扑光子学理论,采用光子晶体、超构表面等一类人工亚波长光学超结构,提出并实现了微波波段或光波段的宽带单向传输、抗散射传输等新奇光学现象。根据拓扑光子学的发展历程,简要回顾了基于类量子霍尔、类量子自旋霍尔、类量子能谷霍尔等类量子效应光子晶体的拓扑物理特性和设计方法。进一步,分析了拓扑光子晶体在微纳集成光子与光量子器件方面的潜在应用。未来,随着人们对超结构的物理原理、光电设计、制备工艺、封装测试等研究的不断深入,超构光子学将成为新一代信息技术领域的重要组成部分,并有望在硅光电子学、集成电路、微光学技术、显微成像、光量子计算、量子精密测量等基础与应用领域,产生积极深远的影响。
光子晶体 拓扑绝缘体 超结构 量子霍尔效应 自旋霍尔效应 Photonic crystals Topological insulators Metamaterials Quantum Hall effect Spin Hall effect 
光子学报
2022, 51(5): 0551305
作者单位
摘要
四川大学材料科学与工程学院,成都 610064
采用温度振荡法和改进的布里奇曼法进行了CdGeAs2多晶合成与单晶生长,生长出28 mm×65 mm完整无开裂的CdGeAs2单晶体。用金刚石外圆切割机切割出CdGeAs2晶片,采用X射线衍射(XRD)和X射线能量色散谱仪(EDS)对合成的多晶粉末和切割出的晶片进行表征。结果表明,合成产物为单相四方黄铜矿结构的CdGeAs2多晶,晶片的原子百分比接近于理想化学计量比。经傅里叶变换红外分光光度计测试发现,初生长的CdGeAs2晶体在11.3 μm处的吸收系数为0.117 cm-1,经过拟合计算得出禁带宽度为0.52 eV。通过变温(110~300 K)霍尔效应测试表明,CdGeAs2晶体在110~300 K温度范围内都为p型导电,载流子浓度pH和霍尔系数RH随温度的升高分别升高和下降,而霍尔迁移率μH几乎不变。拟合计算出晶体中受主电离能EA=0.305 eV,并进一步分析了生长晶体中可能存在的受主缺陷。
半导体晶体 CdGeAs2晶体 类籽晶技术 布里奇曼法 单晶生长 多晶合成 变温霍尔效应 红外透过谱 semiconductor crystal CdGeAs2crystal seed like technology Bridgman method single crystal growth polycrystalline synthesis temperature dependent hall measurement IR transmission spectrum 
人工晶体学报
2022, 51(2): 193
作者单位
摘要
1 淮阴师范学院物理与电子电气工程学院,淮安 223300
2 南京大学电子科学与工程学院,固体微结构物理国家重点实验室,南京 210023
采用射频(RF)等离子体增强化学气相沉积系统制备了硅/二氧化硅多层膜样品,在异质结限制性晶化作用下得到了尺寸均匀的磷/硼共掺杂纳米硅。通过拉曼光谱(Raman)、透射电镜(TEM)和X射线光电子能谱(XPS)研究了磷/硼共掺杂纳米硅/二氧化硅多层膜的微观结构和杂质的分布特点。低温电子顺磁共振(EPR)结果表明,磷、硼杂质可以改变纳米硅的表面化学结构并充分钝化表面处的非辐射复合缺陷。Hall效应测试发现磷和硼杂质可替位式地掺入到纳米硅的内部,且磷杂质具有更高的掺杂效率;通过改变磷硼杂质的掺杂比例可以调控纳米硅的导电类型和载流子浓度。在小尺寸磷/硼共掺杂纳米硅中获得了1 200 nm处满足光通信波段的近红外发光,并通过调控磷的掺杂浓度实现了近红外发光的增强。通过时间分辨荧光光谱测试,结合EPR结果探讨了磷掺杂对纳米硅内部辐射复合和非辐射复合过程的调控使1 200 nm发光增强的物理机制。
纳米硅 掺杂 微结构 电子顺磁共振 霍尔效应 光致发光 光电性质 Si NCs doping microstructure EPR Hall effect photoluminescence optical-electrical property 
人工晶体学报
2022, 51(1): 35
王筠 1,2,*
作者单位
摘要
1 湖北第二师范学院物理与机电工程学院,湖北 武汉 430205
2 湖北第二师范学院光电材料与元器件研究所,湖北 武汉 430205
应用传输矩阵法研究含缺陷层的函数型光子晶体表面的光自旋霍尔效应,数值计算和分析研究发现,通过调节入射线偏振光的偏振角、入射角、函数型光子晶体周期数、缺陷层光学厚度及入射光波圆频率等,可以实现反射光波和透射光波相对于入射点的横向位移控制。在数值计算中还发现通过调节相应参量可以实现百微米量级透射光波的横移,这些工作可为基于自旋的量子通信以及新型光电器件研究提供理论参考。
材料 函数型光子晶体 光自旋霍尔效应 横向位移 角动量守恒 
激光与光电子学进展
2021, 58(23): 2316003
刘慧 1王好南 1谢博阳 1程化 1,*[ ... ]陈树琪 1,2,3,*
作者单位
摘要
1 南开大学 物理科学学院,泰达应用物理研究院,弱光非线性光子学教育部重点实验室,天津 300071
2 山西大学 极端光学协同创新中心,山西太原 030006
3 山东师范大学 光场调控及应用协同创新中心,济南 250358
受凝聚态拓扑绝缘体研究的启发,整数量子霍尔效应、量子自旋霍尔效应、拓扑半金属、高阶拓扑绝缘体等拓扑物理相继在光学系统中实现。光子系统因能带干净,样品设计简单且制作精度高等优势,逐渐成为研究物理拓扑模型和新型拓扑效应的重要平台。拓扑光子学提供了全新的调控光场和操控光子的方法,其拓扑保护的边界态可实现光子对材料杂质缺陷免疫的传播,这种传统光子系统不具备的理想的传输态有望驱动新型光学集成器件的变革。本文将从二维光学体系出发,简要介绍几种典型的光拓扑绝缘体的最新进展,例如光整数量子霍尔效应、光量子自旋霍尔效应、光Floquet拓扑绝缘体、拓扑安德森绝缘体和高阶拓扑绝缘体。文中重点介绍了上述几种光拓扑绝缘体的拓扑模型及其新型的拓扑现象,并在最后展望了新型光学拓扑效应及其在光学器件中的应用前景。
光拓扑绝缘体 光整数量子霍尔效应 光量子自旋霍尔效应 光Floquet拓扑绝缘体 拓扑安德森绝缘体 高阶拓扑绝缘体 拓扑保护边缘态 photonic topological insulators photonic integer quantum Hall effect photonic quantum spin Hall effect photonic Floquet topological insulators topological Anderson insulators photonic higher order topological insulators topological protected edge state 
中国光学
2021, 14(4): 935

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!