齐甜甜 1刘伟 1,*CTHOMAS J 1,2贾宏燕 1[ ... ]申晋 1
作者单位
摘要
1 山东理工大学 电气与电子工程学院,山东 淄博 255049
2 科学集团有限公司,澳大利亚 南澳大利亚州 葛兰许5022
从动态光散射信号中反演纳米颗粒粒度分布,结果准确性和重复性受测量的自相关函数数据点影响,数据点长度不同会导致不同的反演结果。为了解决该问题,提出了一种根据拟合自相关函数的均方根误差来截断自相函数的方法,该方法通过设置拟合误差阈值来自适应地选择最佳自相关函数数据点数。实验结果表明,使用均方根误差阈值方法获得的颗粒粒度分布比其他方法获得的结果具有更高的准确性和更好的重复性。
动态光散射 光子相关光谱 最佳数据点 自相关函数 均方根误差 颗粒粒度分布 纳米颗粒测量 Dynamic light scattering Photon correlation spectroscopy Optimal data points Autocorrelation function Root mean square error Particle size distribution Nanoparticle measurement 
光子学报
2022, 51(3): 0329001
作者单位
摘要
山东理工大学 电气与电子工程学院,山东 淄博 255049
传统的动态光散射法通常采集侧向散射进行纳米颗粒粒度分布的测量,由于多次散射的影响,利用侧向散射不能准确测量高浓度样品的颗粒粒度分布。针对该问题,对后向散射测量方法进行了研究,在实验基础上提出了后向散射最佳光程的判断准则。在不同样品浓度下,用侧向散射和后向散射方法对标称粒径分别为110 nm、220 nm的聚苯乙烯乳胶球颗粒进行了测量。实验结果表明,对于高浓度的待测样品,后向散射测量方法通过自适应调整光程,在最优光程处进行测量,能够有效得到高浓度纳米颗粒的粒径及粒度分布,测量结果相对误差为2.72%。
动态光散射法 高浓度纳米颗粒 后向散射 多次散射 颗粒粒度分布 dynamic light scattering method high-concentration nano-particles back scattering multiple scattering particle size distribution 
应用光学
2021, 42(3): 516
牟彤彤 1申晋 1,aff***李鑫强 1王梦婕 1[ ... ]朱新军 3
作者单位
摘要
1 山东理工大学电气与电子工程学院,山东 淄博 255049
2 山东理工大学机械工程学院,山东 淄博 255049
3 天津工业大学人工智能学院,天津 300387
流速是流动气溶胶动态光散射(DLS)测量的重要制约因素。采用层流条件下的散射光强自相关函数(ACF)反演模拟和实测的流动气溶胶DLS数据,分析了流动对气溶胶颗粒粒度分布(PSD)测量的制约机制。结果表明,流速增加对气溶胶PSD反演结果的强烈影响不能通过流速的贡献在光强ACF模型中表达。导致粒度反演困难的原因是,流速的增加加剧了ACF所在的病态方程的病态性,表现为方程核矩阵条件数的增加。从信号分析的视角,是由于流速的增加降低了光强ACF中粒度信息的幅值。流速的影响与被测气溶胶的粒径有关,这种与粒径的关联性,可以通过表征布朗运动的扩散特征时间和表征气溶胶流动的平移特征时间之比进行评估。扩散与平移的特征时间比,既可表征DLS测量时流速对不同粒径气溶胶的不同影响,也可为实际测量时根据测量对象进行流速选择提供依据。
散射 测量 气溶胶 颗粒粒度分布 自相关函数 
光学学报
2021, 41(14): 1429001
单良 1李浩然 1洪波 1王道档 2[ ... ]孔明 2,*
作者单位
摘要
1 中国计量大学 信息工程学院 浙江省电磁波信息技术与计量检测重点实验室, 杭州3008
2 中国计量大学 计量测试工程学院, 杭州310018
使用人工蜂群算法实现对基于Mie散射理论的小角前向散射法的颗粒系粒径多峰分布的反演,并进行仿真和实验.对服从正态分布、Rosin-Rammler分布、Johnson’s SB分布函数的均匀球形颗粒系进行仿真.分别模拟了单峰、双峰和三峰分布的颗粒群,人工蜂群算法均能较好地实现颗粒粒径的反演.在单峰分布时,颗粒重量频率分布曲线的相对均方根误差低至3.53×10-8.与独立模式Philip-Twomey-NNLS算法和Chahine算法相比,人工蜂群算法的仿真反演精度更高,其双峰宽分布的颗粒重量频率分布曲线的相对均方根误差分别由3.38%和2.70%降至1.53%,且随着峰数增多、分布曲线宽度变窄和噪声增加,Philip-Twomey-NNLS算法和Chahine算法的误差分别增加至44.99%和24.36%,而人工蜂群算法的误差为18.22%.搭建小角前向散射法颗粒测量系统,分别采集国家标准颗粒35 μm单一颗粒群和30 μm、51 μm混合颗粒群的散射图像进行实验研究,均得到较高精度的反演结果,与Philip-Twomey-NNLS算法相比,其特征粒径的相对误差可降低50%左右,特征参数的相对误差在5%以内.
颗粒粒度分布 人工蜂群算法 Mie散射理论 小角前向散射法 多峰分布 Particle size distribution Artificial Bee Colony algorithm Mie scattering theory Small-angle forward scattering method Multimodal distribution 
光子学报
2020, 49(12): 191
作者单位
摘要
1 山东理工大学电气与电子工程学院, 山东 淄博 255049
2 Group Scientific Pty Ltd., 南澳大利亚州, 葛兰许 5022
使用动态光散射法可以获得颗粒的光强加权平均粒径, 以及光强加权颗粒粒度分布。为获得数量或体积加权颗粒粒度分布, 提出从光强分布到数量分布转换的直接比值法。该方法首先依据Mie散射理论求解不同粒径颗粒的散射光强, 然后将光强分布与对应颗粒的散射光强进行比对, 获得颗粒的数量分布, 进而得到颗粒的体积分布。使用动态光散射法测量得到聚苯乙烯乳胶球混合样品的光强分布, 利用直接比值法将光强分布转换为数量分布和体积分布, 并与扫描电子显微镜测量的数量分布进行了对比, 实验数据表明采用直接比值法能够获得准确的数量分布。
Mie散射 颗粒粒度分布 动态光散射 颗粒粒度测量 分布转换 Mie scattering particle size distribution dynamic light scattering particle size measurement distribution conversion 
光散射学报
2018, 30(1): 6
作者单位
摘要
1 山东理工大学 电气与电子工程学院, 山东 淄博 255049
2 天津大学 电子信息工程学院, 天津 300072
在基于线阵CCD的夫琅和费衍射颗粒粒度测量中, 采用Chin-Shifrin积分变换反演算法使得反演的粒度分布出现假峰现象.为解决此问题, 提出在该Chin-Shifrin积分变换反演算法中引入矩形窗函数, 并在分析颗粒粒径与衍射光强导数最小值之间关系的基础上, 确定矩形窗函数中心点位置及左右边界, 利用该矩形窗函数对粒度分布进行截断处理, 消除虚假峰, 提高反演颗粒粒度分布的准确性.分别对两种标准颗粒进行了测量, 并对不同算法的反演结果进行了对比.实验结果表明: 引入矩形窗函数的改进Chin-Shifrin算法, 能够有效排除粒度分布中的多假峰; 粒度分布测量相对误差小于3%, 重复性小于4%.
夫琅和费衍射 改进Chin-Shifrin反演算法 矩形窗函数 颗粒粒度分布 线阵CCD 散射角度区间 Fraunhofer diffraction Improved Chin-Shifrin inversion algorithm Rectangular window function Particle size distribution Linear CCD Scattering angle range 
光子学报
2016, 45(11): 1105002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!