首页 > 论文 > 中国激光 > 45卷 > 10期(pp:1005001--1)

基于高斯光束传播性质的激光相位恢复

Laser Phase Recovery Based on Propagation Properties of Gaussian Beam

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为解决傅里叶变换法处理干涉图的去载频误差问题, 并准确地恢复激光待测相位, 提出了一种基于高斯光束传播性质的相位恢复方法。激光器输出的高斯光束沿其传播方向的横截面上, 其相位为一对称的凸面或凹面, 凸面或凹面的曲率与传播距离有关。根据这一性质求出载频大小, 并最终恢复待测相位。理论上该方法可以精确计算得到载频的大小, 并高精度地恢复待测相位。数值仿真与实验结果都证明该方法可以准确地恢复待测相位。

Abstract

In order to reduce the carrier frequency error of the processed interferogram by using the Fourier transform method, and accurately recover the laser phase to be measured, we propose a phase retrieval method based on the propagation property of Gaussian beam. On the cross section of the Gaussian beam along its direction of propagation, the phase of the beam is a symmetrical convex or concave surface. The curvature of the convex or concave surface is related to the propagation distance. According to this property, the size of the carrier frequency is calculated and the phase to be measured is finally restored. In theory, the size of the carrier frequency can be calculated accurately, and the phase to be measured can be restored with high precision. Both numerical simulation and experimental results show that the proposed method can accurately recover the phase to be measured.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436.1

DOI:10.3788/cjl201845.1005001

所属栏目:光束传输与控制

基金项目:国家自然科学基金(U1730141)

收稿日期:2018-04-04

修改稿日期:2018-04-19

网络出版日期:2018-05-11

作者单位    点击查看

彭金平:四川大学电子信息学院, 四川 成都 610064
冯国英:四川大学电子信息学院, 四川 成都 610064
兰斌:四川大学电子信息学院, 四川 成都 610064

联系人作者:冯国英(guoing_feng@scu.edu.cn); 彭金平(1090228606@qq.com);

【1】Dorrio B V, Fernández J L. Phase-evaluation methods in whole-field optical measurement techniques[J]. Measurement Science and Technology, 1999, 10(3): R33-R55.

【2】Juarez-Salazar R, Guerrero-Sanchez F, Robledo-Sanchez C. Theory and algorithms of an efficient fringe analysis technology for automatic measurement applications[J]. Applied Optics, 2015, 54(17): 5364-5374.

【3】Rajshekhar G, Rastogi P. Fringe analysis: premise and perspectives[J]. Optics and Lasers in Engineering, 2012, 50(8): iii-x.

【4】Surrel Y. Topics in applied physics: fringe analysis[M]. Heidelberg: Springer, 2000, 77(20): 55-102.

【5】Srinivasan V, Liu H C, Halioua M. Automated phase-measuring profilometry of 3-D diffuse objects[J]. Applied Optics, 1984, 23(18): 3105-3108.

【6】Srinivasan V, Liu H C, Halioua M. Automated phase-measuring profilometry: a phase mapping approach[J]. Applied Optics, 1985, 24(2): 185-188.

【7】Patil A, Rastogi P. Approaches in generalized phase shifting interferometry[J]. Optics and Lasers in Engineering, 2005, 43(3/4/5): 475-490.

【8】Xu X F, Cai L Z, Wang Y R, et al. Blind phase shift extraction and wavefront retrieval by two-frame phase-shifting interferometry with an unknown phase shift[J]. Optics Communications, 2007, 273(1): 54-59.

【9】Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America, 1982, 72(1): 156-160.

【10】Takeda M, Mutoh K. Fourier transform profilometry for the automatic measurement of 3-D object shapes[J]. Applied Optics, 1983, 22(24): 3977-3982.

【11】Roddier C, Roddier F. Interferogram analysis using Fourier transform techniques[J]. Applied Optics, 1987, 26(9): 1668-1673.

【12】Massig J H, Heppner J. Fringe-pattern analysis with high accuracy by use of the Fourier-transform method: theory and experimental tests[J]. Applied Optics, 2001, 40(13): 2081-2088.

【13】Zhang W P, Lü X X, Liu S D, et al. Generalized phase-shifting phase retrieval approach based on time-domain Fourier transform[J]. Chinese Journal of Lasers, 2015, 42(9): 0908004.
张望平, 吕晓旭, 刘胜德, 等. 基于时域傅里叶变换的广义相移相位恢复方法[J]. 中国激光, 2015, 42(9): 0908004.

【14】Liu J B, Ronney P D. Modified Fourier transform method for interferogram fringe pattern analysis[J]. Applied Optics, 1997, 36(25): 6231-6241.

【15】Nugent K A. Interferogram analysis using an accurate fully automatic algorithm[J]. Applied Optics, 1985, 24(18): 3101-3105.

【16】Kujawinska M, Wojciak J. Spatial-carrier phase-shifting technique of fringe pattern analysis[J]. Proceedings of SPIE, 1991, 1508: 61-68.

【17】Chan P H, Bryanston-Cross P J, Parker S C. Spatial phase stepping method of fringe-pattern analysis[J]. Optics and Lasers in Engineering, 1995, 23(5): 343-354.

【18】Ferrari J A, Frins E M. Multiple phase-shifted interferograms obtained from a single interferogram with linear carrier[J]. Optics Communications, 2007, 271(1): 59-64.

【19】Huang L B, Lu X X, Zhou Y F, et al. Dual-wavelength interferometry based on the spatial carrier-frequency phase-shifting method[J]. Applied Optics, 2016, 55(9): 2363-2369.

【20】Lan B, Feng G Y, Zhang T, et al. Phase demodulation from a spatial carrier fringe pattern by spatial-temporal fringes method[J]. Journal of Optics, 2016, 18(12): 125704.

【21】Fan J P, Xu X F, Lü X X, et al. Simultaneous phase-shifting multi-wavelength interferometry based on the least-squares iterative algorithm[J]. Chinese Journal of Lasers, 2016, 43(3): 0308007.
范金坪, 徐小飞, 吕晓旭, 等. 基于最小二乘迭代的多波长同时相移干涉测量方法[J]. 中国激光, 2016, 43(3): 0308007.

引用该论文

Peng Jinping,Feng Guoying,Lan Bin. Laser Phase Recovery Based on Propagation Properties of Gaussian Beam[J]. Chinese Journal of Lasers, 2018, 45(10): 1005001

彭金平,冯国英,兰斌. 基于高斯光束传播性质的激光相位恢复[J]. 中国激光, 2018, 45(10): 1005001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF