期刊基本信息
创刊:
1974年 • 半月刊
名称:
中国激光
英文:
Chinese Journal of Lasers
主管单位:
中国科学院
主办单位:
中国科学院上海光机所
中国光学学会
出版单位:
中国激光杂志社
主编:
李儒新
执行主编:
罗毅
副主编:
骆清铭 张镇西 李学春 陈岐岱 顾冬冬 周朴
ISSN:
0258-7025
刊号:
CN 31-1339/TN
电话:
021-69917051
邮箱:
地址:
上海市嘉定区清河路390号
邮编:
201800
定价:
155元/期

本期栏目 2024, 51(1)

MORE

中国激光 第51卷 第1期

作者单位
摘要
中国激光
2024, 51(1): 0100001
作者单位
摘要
1 福建省超快激光技术及应用重点实验室(厦门大学),福建 厦门 361005
2 厦门大学深圳研究院,广东 深圳 518129
位于人眼可见波段(380~780 nm)的激光,在显示、生物医疗、精密加工、精密光谱、光通信等领域有着重要的应用价值。在众多可见光激光的产生方法中,可见光掺稀土光纤激光器因具有高效率、高光束质量、结构简单且免维护等优势,近年来受到国内外的广泛关注。对可见光掺稀土光纤激光器的研究进展进行了详细综述,介绍了可见光连续波光纤激光器、可见光调Q脉冲光纤激光器及可见光锁模脉冲光纤激光器的产生方式和特点。最新研究进展表明,其可覆盖蓝(~480 nm)、青(~491 nm)、绿(~520 nm)、黄(~573 nm)、橙(~605 nm)、红(~635 nm)及深红(~717 nm)等丰富的可见光波长,全光纤可见光输出功率已迈向10 W,而且可见光锁模超短脉冲宽度已窄至<200 fs。结合应用需求,简要展望了可见光波段光纤激光器的发展趋势。
激光器 可见光激光 掺稀土光纤激光器 连续波 Q 锁模 
中国激光
2024, 51(1): 0101001
作者单位
摘要
1 上海师范大学物理系,上海 200234
2 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室,上海 201800

受益于超短超强激光技术的持续迅猛发展,飞秒强激光为人类提供了全新的实验手段与极端的物理条件,使激光物质相互作用进入到一个极端非线性的强场超快新范畴,催生了大量新原理、新现象,推动了技术变革。飞秒强激光驱动的等离子体尾波场加速原理是一种具有超高加速梯度的粒子加速新原理,该技术的加速梯度可达100 GV/m,相比于传统射频加速器提高了3个数量级以上,可在厘米量级的加速长度内获得GeV量级的高品质高能电子束,极大地降低了加速器的成本,为发展新一代粒子加速技术和新型超快辐射源提供了新机遇和新途径。从飞秒强激光驱动等离子体尾波场中的电子注入、能量啁啾控制和高品质电子束产生以及基于高品质电子束的betatron X射线辐射、高能伽马射线和小型化自由电子激光这几个方面介绍了激光等离子体尾波场电子加速的若干主要研究进展,并对未来进行了展望。

激光光学 激光尾波场 电子加速 能量啁啾 betatron辐射 逆康普顿散射 自由电子激光 
中国激光
2024, 51(1): 0101002
作者单位
摘要
1 清华大学精密仪器系精密测试技术与仪器国家重点实验室,北京 100084
2 北京邮电大学电子工程学院信息光子学与光通信全国重点实验室,北京 100876

在光纤锁模激光器中,模式相位锁定产生周期短脉冲的过程称为锁模过程,产生的脉冲在广义上被称为“光耗散孤子”。光纤锁模激光器从传统的单模光纤锁模激光器发展到了多模光纤锁模激光器,锁模机理从一维(1D)时域耗散孤子锁模发展到了(3+1)维时空耗散孤子锁模。通过深入理解耗散孤子的产生机理,有望进一步推动光纤锁模激光器在科学和应用领域的发展,为更多领域带来更多创新和可能性。首先介绍单模光纤锁模激光器中的一维时域耗散孤子锁模,探讨不同色散区域中时域耗散孤子的产生机理;随后介绍多模光纤锁模激光器中时空耗散孤子的最新研究成果,讨论模间色散的补偿方法,揭示其丰富的时空锁模机理和潜在的应用场景;最后对光纤锁模激光器的发展前景进行展望。

激光器 光纤锁模激光器 耗散孤子 锁模机理 非线性光学 
中国激光
2024, 51(1): 0101003
作者单位
摘要
中国工程物理研究院激光聚变研究中心等离子体物理全国重点实验室,四川 绵阳 621900
短脉冲强激光驱动中子源具有微焦点、短脉宽、高注量率的特点,在创新研究和应用方面显示出独特潜力,得到了广泛关注。简要回顾了激光中子源的发展历史和现状,特别是超短脉冲激光驱动束靶中子源的最新研究进展。首先,介绍了激光中子源束流品质提升方面的研究工作。其中,产额提升是激光中子源研究以及实现相关应用的首要问题。当前的研究主要通过反应通道选择、离子加速优化等技术途径来实现激光中子源产额的提升。除了产额提升之外,人们还格外关注激光中子源的方向性提升,提出了削裂反应、逆反应动力学等新方案。其次,介绍了激光中子源参数的诊断方法与现状。通过对激光中子源能谱、角分布、脉宽和源尺寸等参数的精密表征,人们对激光中子源的特性有了更全面的了解,这有力支撑了其应用。最后,回顾了激光中子源目前已开展的应用演示实验。激光中子源适用于部分与传统中子源类似的应用场景,同时基于激光中子源超短脉冲、超高通量等新特性有望拓展出新的独特应用。
激光光学 激光离子加速 激光中子源 超短脉冲激光 
中国激光
2024, 51(1): 0101004
作者单位
摘要
电子科技大学光电科学与工程学院,四川 成都 610097
2~5 μm中红外波段激光在科学研究、生物医疗、通信等众多领域中都有重要的应用价值,一直以来都是激光领域的研究热点。主要对目前国内外高功率2~5 μm全固态中红外光纤激光源的发展现状进行了梳理,包括稀土离子掺杂的中红外光纤激光器、波长灵活可设计的拉曼光纤激光器和宽带超连续谱激光器,并对2~5 μm全固态中红外光纤激光源的发展进行了展望。
激光器 中红外激光 稀土离子 拉曼激光器 超连续谱 氟化物光纤 
中国激光
2024, 51(1): 0101005
作者单位
摘要
南京理工大学材料科学与工程学院/格莱特研究院,江苏 南京 210094
2023年诺贝尔化学奖颁发给了Moungi G. Bawendi、Louis E. Brus和Alexei I. Ekimov,以表彰其在量子点领域的开创性研究工作。虽然量子点为基础物理研究提供了理想的平台,但在应用方面还远未展现其天赋。其中,量子点独特的电子结构和可溶液加工特性,使其在低成本、高性能激光领域具有广阔的前景。经过20余年的研究,胶体量子点激光器取得了令人瞩目的进展,然而,目前的胶体量子点激光器仍未实现商业化,这说明人们对胶体量子点激光器基础物理的理解以及对关键制备技术的掌握仍有欠缺。基于此,笔者对胶体量子点激光器在近年来的工作进展进行了梳理,并提出了胶体量子点激光领域所面临的挑战,以及克服这些挑战的研究思路。最后,对胶体量子点激光器的未来前景和潜在应用进行了展望。
激光器 半导体激光器 胶体量子点 连续波激光 溶液激光 电泵浦激光 
中国激光
2024, 51(1): 0101006
李涤尘 1,2,*张航 1,2,**蔡江龙 1,2
作者单位
摘要
1 西安交通大学机械制造系统工程国家重点实验室,陕西 西安 710049
2 西安交通大学机械工程学院,陕西 西安 710049
难熔高熵合金具有超越传统合金的优异性能,强度和硬度更高,高温性能和耐蚀性更优异,在航空航天、核工程、**装备等领域具有广阔的应用前景。难熔高熵合金发展面临着两个难点:常规真空电弧熔炼方法制备的难熔高熵合金存在成分偏析严重、研发周期冗长、材料尺寸受限等难题;难熔高熵合金的硬度很高,难以实现复杂结构的成形和加工。因此,现有的冶金、成形、加工等技术面临挑战。通过激光增材制造实现材料与结构一体化成形是突破现有问题的发展方向,国内外学者在此方面进行了大量探索。本文对难熔高熵合金激光增材制造的发展现状进行了综述与分析,介绍了难熔高熵合金复杂构件从材料到制造的研究进展,阐述了高熵合金的研发途径、增材成形工艺和缺陷调控、难熔高熵合金在不同温度下的力学性能,以及增材制造工艺面临的挑战和取得的进展,最后总结了难熔高熵合金增材制造未来的应用方向和发展趋势。
激光技术 激光增材制造 难熔高熵合金 合金开发 一体化制造 
中国激光
2024, 51(1): 0102001
作者单位
摘要
中国科学技术大学精密机械与精密仪器系,安徽 合肥 230026

特殊浸润性表面在众多应用领域都发挥着重要作用,因而它的制备不论是在基础科学研究领域还是在工程实际应用方面都具有重要意义。可加工材料广泛以及擅长微纳结构精细设计的优势使飞秒激光成为一种制备各种超浸润微结构表面的有效工具。本综述系统总结了飞秒激光微加工技术在调控材料表面浸润性方面的研究进展。基于飞秒激光对材料表面微纳结构的设计和改性,可以实现超亲水与超疏水性、超疏油性、水下超疏气与超亲气性、液体灌注超滑表面、水下超疏聚合物性、超疏液态金属性、可调黏滞性、各向异性浸润性、智能可调浸润性等一系列极端浸润性质。这些特殊的浸润性使得飞秒激光作用后的材料获得了一系列实际应用,如防水/防油/防气、自清洁、液滴操控、液体图案化、浮力增强、微小液滴/气泡释放、油水分离、水气分离、防结冰、防腐蚀、水下减阻、水雾收集、微流控、柔性电路/电子器件、细胞工程、生物医疗、海水淡化、表面增强拉曼散射等。最后,本文总结讨论了飞秒激光调控材料表面浸润性技术的突出优势以及当前所面临的挑战。

激光技术 飞秒激光 微纳加工 浸润性 超疏水 
中国激光
2024, 51(1): 0102002
作者单位
摘要
中国科学院宁波材料技术与工程研究所,激光极端制造研究中心,浙江 宁波 315201
随着多材料激光增材制造科学与技术的不断进步,一体化制备极端使役性能的大物性差异材料与元件成为可能。但大物性差异多材料增材制造成形界面问题尤为突出。根据大物性差异多材料激光增材制造成形的进展,笔者聚焦大物性差异材料的界面问题和界面优化方法,分别以激光吸收率差异、热物性差异、界面生成脆性相分类阐述界面问题,同时在工艺优化、功能梯度设计、复合制造三个方面对界面优化方法进行总结,为实现大物性差异材料的高质量成形提供参考。同时,阐述了大物性差异多材料激光增材制造建模与仿真研究进展,以期通过宏观和介观尺度模拟指导大物性差异材料的激光增材制造成形参数优化。最后对多材料激光增材制造大物性差异材料的应用和共性科学问题及技术挑战进行了展望与思考。
激光技术 大物性差异材料 多材料激光增材制造 界面缺陷 界面优化 
中国激光
2024, 51(1): 0102003
作者单位
摘要
浙江大学极端光学技术与仪器全国重点实验室,光电科学与工程学院,先进光子学研究中心,嘉兴研究院智能光子研究中心,浙江大学杭州国际科创中心,浙江 杭州 310027

作为一种二维形式的超构材料,超构表面允许以前所未有的自由度对光的振幅、相位、偏振等维度进行灵活高效的调控,有望突破传统光学的限制,实现低成本、高性能、超轻超薄、功能新颖的新型光学元件,近年来引起了学术界和产业界越来越浓厚的研究兴趣。从物理机理、相位调控到正向设计方法,系统回顾了超构表面的设计原理。介绍了这些机理如何用于实现丰富的应用,包括功能复用、宽带宽、大视场、多层级联、非局域超构表面等,涵盖了最主要和最新的发展方向。最后,讨论了超构表面在走向实用化的道路上所面临的器件设计和加工制造上的挑战,并对领域未来的发展进行展望。

材料 超构表面 超构透镜 成像 光学全息 复用 消色差成像 
中国激光
2024, 51(1): 0103001
作者单位
摘要
中国科学院上海光学精密机械研究所,上海 201800
掺镱大模场光子晶体光纤在高峰值功率超快激光放大器中有着重要的应用价值,其研究得到了广泛关注。首先简要介绍了国内外掺镱大模场光子晶体光纤的研究进展,阐述了掺镱大模场光子晶体光纤的基本设计思路,对比说明了保偏型掺镱光子晶体光纤的设计制备方法。重点介绍了近十年来中国科学院上海光学精密机械研究所在掺镱大模场光子晶体光纤方面的研究进展。包括掺镱大模场光子晶体光纤的纤芯折射率大小和均匀性控制、光子晶体光纤微结构控制等关键技术。采用自主研制的四种芯径为40~100 μm的掺镱大模场光子晶体光纤开展了皮秒脉冲激光放大实验。利用40 μm芯径的保偏掺镱光子晶体光纤实现了平均功率为100 W、光束质量因子(M2)小于1.4的稳定输出,偏振消光比为12 dB。利用100 μm芯径的保偏掺镱大模场光子晶体光纤实现了M2小于1.5的高光束质量脉冲放大。上述研究为掺镱大模场光子晶体光纤的国产化应用奠定了基础。
光纤光学 掺镱石英玻璃 大模场光子晶体光纤 皮秒脉冲激光放大 光纤激光 
中国激光
2024, 51(1): 0106001
作者单位
摘要
深圳大学物理与光电工程学院,光电子器件与系统教育部/广东省重点实验室,广东 深圳 518060
高时空分辨可视化技术是脑科学研究的重要工具。荧光显微成像技术在特异性、多样性、图像对比度和时空分辨率等方面具有显著优势,但由于光在组织中的穿透深度有限,无创的荧光成像难以在活体水平获取深层脑区神经血管单元的高分辨结构和功能信息。因此,在脑科学研究中,荧光内窥显微成像技术受到越来越多研究者的青睐。得益于相关科学技术的发展,内窥镜探头在保持高性能的同时,实现了小型化并提供了更大的灵活性,可以植入活体大脑的不同深度处,开展特定深层脑区的功能调控研究。本综述介绍了基于梯度折射率透镜和单根多模光纤这两种探头的植入式荧光内窥显微成像技术及其发展和迭代进程,概述了它们在高分辨活体脑成像研究中的应用,以及在临床神经外科手术中的初步探索性应用。最后,展望了荧光内窥脑成像技术未来的发展前景。
显微 荧光内窥显微成像 活体脑成像 梯度折射率透镜 多模光纤 
中国激光
2024, 51(1): 0107001
作者单位
摘要
1 哈尔滨工业大学仪器科学与工程学院,黑龙江 哈尔滨 150080
2 北京大学未来技术学院,北京 100871
超分辨荧光显微镜突破了光学衍射极限造成的空间分辨率限制,使得生物学家能够在生命体和细胞具有活性的状态下,对其功能与结构进行高精度动态记录,有望揭示更多重要的生命现象细节。然而,由于超分辨荧光显微技术的成像视场、深度、分辨率、速度等不易兼得,所以解卷积作为一种最有效且直接的求解逆问题的框架,被广泛应用于增强超分辨显微镜的时空分辨率。研究人员聚焦于通过相应算法设计实现高质量显微图像的重建,在一定程度上克服了超分辨荧光显微镜的硬件限制,可以更好地恢复生物信息。本文首先介绍了解卷积方法的基本原理及其发展历程,接着列举了不同解卷积技术在不同模态下的重建原理和效果以及这些技术在生物学上的应用,最后总结了基于深度学习的解卷积方法在超分辨荧光显微镜技术上的最新进展和未来的发展潜力,并对包括傅里叶环相关的定量评估图像重建质量的方法的最新进展进行了阐述。
显微 解卷积 超分辨显微镜 活细胞成像 计算成像 荧光显微镜 
中国激光
2024, 51(1): 0107002
赖溥祥 1,2,3,4,*赵麒 1,2周颖颖 1,2程圣福 1,2[ ... ]仲天庭 1,2,**
作者单位
摘要
1 香港理工大学生物医学工程系,香港 九龙999077
2 香港理工大学深圳研究院,广东 深圳 518055
3 香港理工大学光子技术研究院,香港 九龙999077
4 香港理工大学体育科技研究院,香港 九龙999077

光学技术在生物医学中扮演着越来越重要的角色,其非电离辐射、高分辨率、高对比度和对生物组织异变高度灵敏等特性使其非常适用于生物组织的研究,包括成像、传感、治疗、刺激以及控制等。然而由于光折射因子在生物组织中的分布是不均匀的,光在生物组织中的传播会受到很强的散射影响,故纯光学技术的穿透深度和空间分辨率是“鱼和熊掌不可兼得”;高分辨率光学成像应用仅限于样品浅表层,当成像深度增加时分辨率急剧下降。实现光在深层生物组织里的高分辨率成像或应用是人们期盼已久的目标。近年来,为解决这一问题,研究者提出了不同的方法,例如切换到更长的光波长以减小组织散射系数,在信号检测时将漫射光转换为散射不明显的超声信号,逆转或者预先补偿由光的多次散射所带来的相位畸变,或借助光纤等微创光学通道实现深层生物组织的高分辨率光学成像、刺激等。基于团队在深层生物组织光学相关领域多年的耕耘,从光在生物组织中的传播特性出发,梳理和总结了近年来研究人员在光-声结合和光学波前整形技术等方面展开的诸多探索,以及在生物组织操控、成像、光学计算以及人工智能等领域中的应用尝试。虽然尚有诸多不足,但随着硬件设备的更新和计算技术的发展,在不远的将来有望实现活体深层生物组织光学高分辨率应用。在这一求索过程中,新方法和新能力将不断激发新的应用灵感,为光学尤其是生物医学光子学带来全新的理念和机遇。

生物光学 光学成像 生物医学光子学 深层组织 光学波前整形 光声成像 
中国激光
2024, 51(1): 0107003
王犇 1,2,3,4张利剑 1,2,3,4,*
作者单位
摘要
1 南京大学现代工程与应用科学学院,江苏 南京 210023
2 智能光传感与调控技术教育部重点实验室,江苏 南京 210023
3 人工微结构科学与技术协同创新中心,江苏 南京 210023
4 南京大学固体微结构物理国家重点实验室,江苏 南京 210023
量子精密测量作为当代量子力学的主要应用方面之一,近些年来一直是量子科技的重要研究和发展方向。量子精密测量的主要研究目标是针对物理系统中的未知参数,利用量子资源进行量子增强测量,以提升参数测量精度。与其他物理系统相比,光子系统具有相干时间长、不易受到环境干扰等优越性,因而常被用作量子信息处理的载体。以光子为基础的传感器提升传感精度是光量子精密测量的主要任务。介绍了量子精密测量的一般性原理,给出参数估计的量子极限精度下界。同时,介绍了目前光量子精密测量的理论与实验研究进展以及相应的挑战。
量子光学 量子精密测量 参数估计 海森堡极限 传感 
中国激光
2024, 51(1): 0112001
作者单位
摘要
中国科学院上海微系统与信息技术研究所集成电路材料全国重点实验室,上海 200050
太赫兹量子级联激光器和太赫兹量子阱探测器都是基于子带间电子跃迁的半导体器件,具有体积小、频率可调、响应速度快等优点。其工作波长位于微波波长和红外波长之间,其光谱涵盖了众多气体分子、化合物以及凝聚态物质的频谱特征,在天文观测、公共安全、生物医药等领域中有重大应用前景。近年来,太赫兹量子级联激光器和太赫兹量子阱探测器的性能有了显著提高,其应用也受到关注。回顾了太赫兹量子级联激光器和量子阱探测器的发展历程,简述了其工作原理和器件结构,介绍了器件性能在工作温度、光谱范围等方面的最新进展及其在高分辨光谱、太赫兹成像、无线宽带通信等方面的应用,并在此基础上分析了目前存在的问题和研究热点,对其未来发展进行了展望。
光学器件 太赫兹技术 量子级联激光器 量子阱探测器 
中国激光
2024, 51(1): 0114001
程亚 1,2,*
作者单位
摘要
1 华东师范大学物理与电子科学学院,上海 200241
2 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室,上海 201800

近年来,薄膜铌酸锂光子集成技术发展极为迅速,其背后有着深刻的物理、材料、技术原因。单晶薄膜铌酸锂为解决光子集成芯片领域长期存在的低传输损耗、高密度集成以及低调制功耗需求提供了至今为止综合性能最优的解决方案。面向未来的新一代高速光电器件与超大规模光子集成芯片应用,本文回顾了薄膜铌酸锂光子技术的起源及其近期的快速发展,讨论了若干薄膜铌酸锂光子结构的加工技术,并展示了一系列当前性能最优的薄膜铌酸锂光子集成器件与系统,包括超低损耗可调光波导延时线、超高速光调制器、高效率量子光源,以及高功率片上放大器与片上激光器。这些器件以其体积小、质量轻、功耗低、性能好的综合优势,将对整个光电子产业产生难以估量的影响。

光子集成 光波导 光调制器 微波光子学 光量子集成器件 薄膜 薄膜铌酸锂 
中国激光
2024, 51(1): 0119001
符庭钊 1,4,5孙润 2,3黄禹尧 2,3张检发 1,4,5[ ... ]陈宏伟 2,3,*
作者单位
摘要
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 清华大学电子工程系,北京 100084
3 北京信息科学与技术国家研究中心,北京 100084
4 国防科技大学新型纳米光电信息材料与器件湖南省重点实验室,湖南 长沙 410073
5 国防科技大学南湖之光实验室,湖南 长沙 410073
光学神经网络是区别于冯·诺依曼计算架构的一种高性能新型计算范式,具有低延时、低功耗、大带宽以及并行信号处理等优势。片上集成是光学神经网络微型化发展的一种典型方式,近年来片上集成光学神经网络获得了学术界及工业界的广泛关注。对基于不同计算单元结构的片上集成光学神经网络的相关研究工作进行了梳理,并分析了其设计原理、实现方法及系统架构特征。同时结合国内外最新研究进展,进一步分析了片上集成光学神经网络在计算单元大规模拓展、可重构、非线性运算和实用化等方面面临的挑战及其未来发展趋势。
集成光学 光计算 光学神经网络 芯片 人工智能 
中国激光
2024, 51(1): 0119002
作者单位
摘要
国家自然科学基金委员会信息科学部,北京 100085

本文从国家自然科学基金申请与资助的角度,总结回顾了自“十三五”(2016—2020年)以来至“十四五”开局之年(2021年)期间国家自然科学基金委员会信息科学部光学和光电子学学科(F05)自由探索类项目、引导类项目以及人才类项目的申请资助情况,从项目数量、资助额度、依托单位、学科领域等角度分析了该领域基金资助的总体特征、结构性变化以及发展趋势,依据这一时期的优秀科研成果分析了基金资助的成效,并结合“十四五”发展规划对光学和光电子学学科未来的优先发展领域与基金管理工作进行了展望。

光学和光电子学 资助趋势 优化布局 
中国激光
2024, 51(1): 0121001
作者单位
摘要
国防科技大学前沿交叉学科学院,湖南 长沙 410073
从文献引用的视角全面回顾总结了光纤激光相干合成二十余年的研究历程。按照学术发展初期、学术高速发展期、学术发展平缓期和技术发展关键期等4个阶段,分别介绍了光纤激光相干合成的代表性成果,分析并总结了学术水平和影响力较为突出的文献,梳理了光纤激光相干合成从概念提出到实际应用的演进脉络,研判了未来发展趋势。
激光光学 相干合成 光纤激光 研究历程 
中国激光
2024, 51(1): 0121002