Author Affiliations
Abstract
College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
Optical fiber bundles frequently serve as crucial components in flexible miniature endoscopes, transmitting end-to-end images directly for medical and industrial applications. Each core usually acts as a single pixel, and the resolution of the image is limited by the core size and core spacing. We propose a method that exploits the hidden information embedded in the pattern within each core to break the limitation and obtain high-dimensional light field information and more features of the original image including edges, texture, and color. Intra-core patterns are mainly related to the spatial angle of captured light rays and the shape of the core. A convolutional neural network is used to accelerate the extraction of in-core features containing the light field information of the whole scene, achieve the transformation of in-core features to real details, and enhance invisible texture features and image colorization of fiber bundle images.
fiber bundles image enhancement image colorization mode pattern deep learning 
Advanced Imaging
2024, 1(1): 011002
Author Affiliations
Abstract
1 State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
2 Zhejiang Lab, Hangzhou, China
3 Ningbo Innovation Center, Zhejiang University, Ningbo, China
Structure illumination microscopy (SIM) imposes no special requirements on the fluorescent dyes used for sample labeling, yielding resolution exceeding twice the optical diffraction limit with low phototoxicity, which is therefore very favorable for dynamic observation of live samples. However, the traditional SIM algorithm is prone to artifacts due to the high signal-to-noise ratio (SNR) requirement, and existing deep-learning SIM algorithms still have the potential to improve imaging speed. Here, we introduce a deep-learning-based video-level and high-fidelity super-resolution SIM reconstruction method, termed video-level deep-learning SIM (VDL-SIM), which has an imaging speed of up to 47 frame/s, providing a favorable observing experience for users. In addition, VDL-SIM can robustly reconstruct sample details under a low-light dose, which greatly reduces the damage to the sample during imaging. Compared with existing SIM algorithms, VDL-SIM has faster imaging speed than existing deep-learning algorithms, and higher imaging fidelity at low SNR, which is more obvious for traditional algorithms. These characteristics enable VDL-SIM to be a useful video-level super-resolution imaging alternative to conventional methods in challenging imaging conditions.
deep learning structure illumination microscopy video-level imaging super-resolution imaging 
Advanced Imaging
2024, 1(1): 011001
作者单位
摘要
西南石油大学 新能源与材料学院, 成都 610500
化学动力学疗法(CDT)利用肿瘤细胞内源性H2O2与芬顿催化剂反应生成高毒性的羟基自由基(•OH), 从而杀死肿瘤细胞, 但内源性H2O2不足和纳米粒子转运效率较低导致抗癌效果不理想。本研究制备了一种分散性良好、尺寸较小的铜掺杂介孔二氧化硅(Cu-MSN), 负载化疗药物阿霉素(DOX)和抗坏血酸盐(AA)后, 表面经叶酸(FA)和二甲基马来酸酐(DMMA)改性的壳聚糖(FA-CS-DMMA)以及羧甲基壳聚糖(CMC)包裹, 得到pH响应型靶向纳米催化剂FA-CS-DMMA/CMC@Cu-MSN@DOX/AA(缩写为FCDC@Cu-MSN@DA)。扫描电镜显示纳米粒子FCDC@Cu-MSN@DA粒径约为100 nm。体外48 h内Cu2+释放量可达80%, 药物DOX释放达到57.3%。释放的AA经自氧化后产生H2O2, 诱导Cu2+发生类芬顿反应, 从而增强CDT。细胞实验证明, FCDC@Cu-MSN@DA联合化疗药物表现出优异的抗肿瘤活性, 说明该多功能纳米催化剂在癌症治疗中具有潜在应用前景。
癌症治疗 铜离子 过氧化氢 纳米催化剂 化学动力学疗法 tumor therapy copper iron hydrogen peroxide nanocatalyst chemodynamic therapy 
无机材料学报
2023, 39(1): 90
作者单位
摘要
华东理工大学 化工学院, 化学工程联合国家重点实验室, 上海 200237
锰铈氧化物由于较强的氧化还原活性、优良的低温脱硝性能, 已被广泛用于选择性催化还原(SCR)脱硝反应, 但是锰铈氧化物存在活性组分易团聚、比表面积较低等问题, 限制其催化剂活性的提高。本研究以介孔结构的石墨烯基SiO2(G@SiO2)纳米材料为模板, 采用水热法制备了系列石墨烯基介孔锰铈氧化物(G@MnOx-CeO2)催化剂, 并考察了该催化剂在低温下(100~300 ℃)的SCR脱硝性能。结果表明, 与石墨烯基铈氧化物(G@CeO2)相比, G@MnOx-CeO2催化剂具有较高脱硝活性。当Mn、Ce与模板G@SiO2质量比分别为0.35、0.90时, G@Mn(0.35)Ce(0.9)催化剂的脱硝活性最佳, 220 ℃下NO转化率达到最高(80%)。添加适量MnOx, 提高了G@MnOx-CeO2催化剂的比表面积、孔容, 降低了催化剂的结晶度; 并且MnOx-CeO2以纳米尺度(2~3 nm)较为均匀地分散于石墨烯片层表面。此外, 由于MnOx与CeO2之间存在协同作用, Mn原子可以部分替代Ce原子掺杂于CeO2的晶体结构中形成MnOx-CeO2固溶体, 使G@Mn(0.35)Ce(0.9)催化剂表面存在较高含量的高价态Mn3+和Mn4+、Ce4+以及较高的化学吸附氧浓度, 从而展现出较高的脱硝性能。该工作为MnOx-CeO2基催化剂在低温NH3-SCR中的实际应用提供了基础数据。
石墨烯 铈氧化物 锰氧化物 NO 选择性催化还原 graphene cerium oxide manganese oxide NO selective catalytic reduction 
无机材料学报
2023, 39(1): 81
作者单位
摘要
1 1.电子科技大学 电子科学与工程学院, 国家电磁辐射控制材料工程技术中心, 多频谱吸波材料与结构教育部重点实验室, 成都 611731
2 2.中国科学技术大学 材料科学与工程系, 能量转换材料重点实验室, 合肥 230026
随着5G无线通信与低频雷达侦察技术的飞速发展, 低频电磁波辐射已成为当代的严重问题。目前, 中高频段吸波材料的研究已趋于成熟, 而设计低频段吸波材料仍面临巨大的挑战, 亟待研究者们解决。基于四分之一波长相消机制, 本研究设计了0.5~3 GHz低频段复合吸波材料。采用简单的一步水热法, 诱导铁氧体在羰基铁粉与碳纳米管表面生长, 制备出CIPs@Mn0.8Zn0.2Fe2O4-CNTs三元复合材料, 对比研究了碳纳米管含量对材料吸收峰频率的影响。实验结果表明, 引入碳纳米管, 一方面为材料带来了界面极化、偶极极化等额外的损耗机制, 增加了材料的衰减系数; 另一方面基于四分之一波长相消机制, 高介电与高磁导率的耦合, 使材料在低频段获得良好的阻抗匹配。最终, 在4 mm厚度下, 样品分别在2.11与1.75 GHz处, 获得了-40.8与-32.1 dB的反射损耗, -10 dB带宽分别为1.70~2.70 GHz和1.40~2.20 GHz。该复合材料制备工艺简单, 低频吸收性能良好, 具有很大的应用潜力, 为开发更有效的低频吸波材料提供了新的思路和方法。
碳纳米管 复合材料 羰基铁粉 波长相消 低频吸波 carbon nanotubes composite material carbonyl iron powder wavelength cancellation low- frequency absorption 
无机材料学报
2023, 39(1): 71
作者单位
摘要
西北工业大学 超高温结构复合材料国防科技重点实验室, 纤维增强轻质复合材料陕西省重点实验室, 西安 710072
新一代高超声速飞行器热端部件服役温度不断提高, 对表面防护涂层的相稳定性和抗烧蚀性能提出了更高的要求。本工作针对传统过渡金属氧化物ZrO2、HfO2涂层开展高熵化设计, 采用高温固相反应结合超音速大气等离子喷涂制备(Hf0.125Zr0.125Sm0.25Er0.25Y0.25)O2-δ(M1R3O)、(Hf0.2Zr0.2Sm0.2Er0.2Y0.2)O2-δ(M2R3O)、(Hf0.25Zr0.25- Sm0.167Er0.167Y0.167)O2-δ(M3R3O)三种高熵氧化物涂层, 探究稀土组元含量对高熵氧化物涂层的相结构演变规律、相稳定性以及抗烧蚀性能的影响。M2R3O涂层和M3R3O涂层呈现优异的相稳定性和抗烧蚀性能, 涂层经热流密度为2.38~2.40 MW/m2的氧-乙炔焰烧蚀后仍保持物相结构稳定, 未发生固溶体分解或析出稀土组元。其中M2R3O涂层循环烧蚀180 s后的质量烧蚀率与线烧蚀率分别为0.01 mg/s和-1.16 μm/s, 相比M1R3O涂层(0.09 mg/s、-1.34 μm/s)以及M3R3O涂层(0.02 mg/s、-4.51 μm/s), 分别降低了88.9%、13.4%以及50.0%、74.3%, 表现出最优异的抗烧蚀性能。M2R3O涂层的抗烧蚀性能优异归因于其兼具较高的熔点(>2200 ℃)和较低的热导率((1.07±0.09) W/(m·K)), 使其有效防护内部的SiC过渡层以及C/C复合材料免受氧化损伤, 避免了界面SiO2相形成所导致的界面开裂。
高熵陶瓷 过渡金属氧化物 热喷涂 热防护涂层 抗烧蚀 C/C复合材料 high-entropy ceramic transition metal oxide thermal spray thermal protection coating ablation resistance C/C composite 
无机材料学报
2023, 39(1): 61
吴军 1,2徐培飞 1,2荆瑞 1,2张大海 1,2,*费庆国 1,2
作者单位
摘要
1 1.东南大学 机械工程学院, 南京 211189
2 2.高速飞行器结构与热防护教育部重点实验室, 南京 211189
高速飞行器中的陶瓷基复合材料结构在服役过程中不可避免地会遇到低速冲击问题, 低速冲击后的损伤形式以及剩余承载能力是影响飞行器结构安全的关键问题。本研究以二维编织SiC/SiC复合材料板件为研究对象, 在不同能量下开展了低速冲击试验, 分析了低速冲击载荷下试验件的表面损伤状态, 通过计算机断层扫描技术观察了试验件内部的损伤形貌, 结合冲击过程中的冲击响应曲线以及应变历史曲线, 分析了SiC/SiC复合材料低速冲击过程的损伤机理。针对含勉强目视可见损伤的试验件开展了冲击后剩余强度试验, 研究了勉强目视可见损伤对SiC/SiC复合材料剩余承载性能的影响。结果表明, 在低速冲击载荷的作用下, 试验件的表面损伤主要包括无表面损伤、勉强目视可见损伤、半穿透损伤以及穿透损伤, 试验件的内部损伤主要有锥形体裂纹、纱线断裂以及分层损伤。低速冲击损伤会严重影响SiC/SiC复合材料的剩余性能, 虽然试验件损伤勉强目视可见,但其剩余压缩强度为无损件81%, 剩余拉伸强度仅为无损件的68%。
SiC/SiC 陶瓷基复合材料 低速冲击 损伤特性 剩余强度 SiC/SiC ceramic matrix composites low-velocity impact damage characteristics residual strength 
无机材料学报
2023, 39(1): 51
师维刚 1,3,4张超 1,2,3李玫 1,3王晶 3张程煜 1,2,3,*
作者单位
摘要
1 1.西北工业大学 材料学院 NPU-SAS联合研究中心, 西安 710072
2 2.西北工业大学 极端力学研究院, 西安 710072
3 3.西北工业大学 材料学院, 西安 710072
4 4.西安科技大学 理学院 力学系, 西安 710600
二维编织碳化硅纤维增强碳化硅复合材料(2D-SiCf/SiC)在航空领域中得到广泛使用, 然而该材料层间强度低, 使其易萌生层间裂纹, 引起分层破坏。为此, 本工作采用楔形双悬臂梁法(W-DCB)和悬臂梁法(DCB)开展了层间I型断裂试验, 获得了2D-SiCf/SiC的层间裂纹驱动的加载数据, 得到了其裂纹端口张开力及张开位移变形曲线。在试验加载过程, 通过光学显微镜监测了视觉裂纹扩展过程, 探究了2D-SiCf/SiC的层间I型裂纹扩展规律。结合理论分析和裂纹视觉特征解释了加载曲线拐点及其他特征点的断裂力学含义。利用扫描电子显微镜分析了2D-SiCf/SiC的层间断面特征, 揭示了断面分层裂纹扩展机制。结果表明: W-DCB方法测量的2D-SiCf/SiC层间I型初始能量释放率与DCB方法等效; 2D-SiCf/SiC层间I型断裂过程中, 裂纹端口变形曲线的多峰性不符合经典线弹性断裂力学预测的加载峰后特征, 反映了2D-SiCf/SiC层间约束关系的复杂性; 层间断面为结构性非完全损伤, 发生了局部纤维桥连现象。
2D-SiCf/SiC复合材料 层间I型断裂 表征分析 纤维桥连 2D-SiCf/SiC composites interlaminar mode I fracture characterization analysis fiber bridging 
无机材料学报
2023, 39(1): 45
作者单位
摘要
1 1.北京交通大学 理学院, 应用微纳米材料研究所, 北京 100049
2 2.中国科学院 上海硅酸盐研究所, 上海200050
基于声表面波(Surface acoustic wave, SAW)技术的无线无源器件是在极端条件下工作的首选传感器, 其中压电衬底在高温环境下的稳定性是影响SAW器件性能的关键因素。钽酸镓镧(LGT)晶体因电阻率高和稳定性好, 是SAW器件理想的高温压电衬底。为了全面评估LGT晶体的高温电阻率和材料系数稳定性, 本工作分别测试了纯LGT和掺铝钽酸镓镧(LGAT)晶体在氧气、氮气和氩气气氛中的高温电阻率, 并采用超声谐振谱(Resonant ultrasound spectroscopy, RUS)技术定征了纯LGT晶体高温全矩阵材料系数。电阻率测试结果显示, 在不同气氛下LGT晶体的高温导电行为明显不同, 纯LGT晶体在400~525 ℃范围内, 氮气中的电阻率最高; 在525~700 ℃范围内, 氩气中的电阻率最高, 700 ℃电阻率高达2.05×106 Ω·cm; 而对于LGAT晶体, 在整个测试温度区间氮气中的电阻率均最高, 700 ℃电阻率达1.12×106 Ω·cm, 略低于纯LGT晶体。高温全矩阵材料系数测试结果显示, 室温~400 ℃范围内, LGT晶体的电弹性能稳定, 随着温度升高, 弹性系数略有降低, 而压电系数d11几乎保持不变。以上结果表明, LGT晶体在高温下具有非常高的电阻率和材料稳定性, 适合作为压电衬底用于制备高温压电器件。本工作的研究结果为LGT基高温压电器件的设计与制备奠定了基础。
钽酸镓镧 高温电阻率 封装气氛 高温材料系数 langatate high temperature resistivity encapsulation atmosphere high temperature material coefficient 
无机材料学报
2023, 38(11): 1364
作者单位
摘要
上海大学 材料科学与工程学院, 上海 200444
电致变色材料应用于节能建筑、智能显示等领域, 是最具研究前景的智能材料之一。液相法制备WO3电致变色薄膜可以构建复杂多元变色结构, 在光调制幅值、响应时间, 特别是大面积低成本制备方面显现出巨大的潜力。本研究旨在开发一种低成本、易于规模化的WO3纳米晶液相镀膜工艺, 改善液相法常见的循环稳定性差和制备工艺复杂的问题。通过该方法制备了光调制幅度高、响应迅速和抗疲劳性能好的WO3电致变色薄膜。本工作对退火工艺进行优化, 成功合成出低聚集度、高结晶性的WO3纳米粉体。通过球磨分散制备WO3纳米晶镀膜液, 探究球磨对WO3纳米粒子的性能影响, 针对薄膜微结构和镀膜液结晶性对其电致变色性能进行工艺优化。获得了高光学调制幅度(82%), 短响应时间(tc/tb: 8 s/4.2 s), 高着色效率(81.5 cm2·C-1)和高循环稳定性(>1000次)的WO3电致变色薄膜。本工作通过改性WO3纳米粉体结晶和分散性能, 全面提升了纳米晶液相镀膜技术制备的WO3电致变色薄膜性能, 表明采用液相法制备WO3电致变色薄膜在变色性能和循环稳定性上有望突破可实用水平。
电致变色 WO3 纳米分散 液相镀膜 electrochromic WO3 nano dispersion liquid phase coating 
无机材料学报
2023, 38(11): 1355

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!