Chinese Optics Letters, 2024, 22 (3): 031903, Published Online: Mar. 25, 2024  

Broadband second-harmonic generation in thin-film lithium niobate microdisk via cyclic quasi-phase matching

Author Affiliations
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2 School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
3 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
4 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
Abstract
Whispering-gallery-mode (WGM) microresonators can greatly enhance light–matter interaction, making them indispensable units for frequency conversion in nonlinear optics. Efficient nonlinear wave mixing in microresonators requires stringent simultaneous optical resonance and phase-matching conditions. Thus, it is challenging to achieve efficient frequency conversion over a broad bandwidth. Here, we demonstrate broadband second-harmonic generation (SHG) in the x-cut thin-film lithium niobate (TFLN) microdisk with a quality factor above 107 by applying the cyclic quasi-phase-matching (CQPM) mechanism, which is intrinsically applicable for broadband operation. Broadband SHG of continuous-wave laser with a maximum normalized conversion efficiency of ∼15%/mW is achieved with a bandwidth spanning over 100 nm in the telecommunication band. Furthermore, broadband SHG of femtosecond lasers, supercontinuum lasers, and amplified spontaneous emission in the telecommunication band is also experimentally observed. The work is beneficial for integrated nonlinear photonics devices like frequency converters and optical frequency comb generator based on second-order nonlinearity on the TFLN platform.

Jiefu Zhu, Tingting Ding, Xuerui Sun, Fengchao Ni, Hao Li, Shijie Liu, Yuanlin Zheng, Xianfeng Chen. Broadband second-harmonic generation in thin-film lithium niobate microdisk via cyclic quasi-phase matching[J]. Chinese Optics Letters, 2024, 22(3): 031903.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!