中国激光, 2022, 49 (24): 2408002, 网络出版: 2022-11-15  

平行平面腔光学参量振荡器失谐特性实验研究 下载: 727次

Characteristics of Mirror Misalignment of Plane-Parallel Cavity-Based Optical Parametric Oscillators
付俏俏 1,2,5刘鹏翔 1,2,4,*祁峰 1,2,4李惟帆 1,2,4牛春草 1,2,3李伟 1,2,3郭丽媛 1,2汪业龙 1,2,4刘朝阳 1,2,4
作者单位
1 中国科学院沈阳自动化研究所,辽宁 沈阳 110169
2 辽宁省太赫兹成像与感知重点实验室,辽宁 沈阳 110169
3 沈阳化工大学信息工程学院,辽宁 沈阳 110142
4 中国科学院机器人与智能制造创新研究院,辽宁 沈阳 110169
5 中国科学院大学,北京 100049
摘要
纳秒脉冲泵浦的平行平面腔光学参量振荡器(OPO)是一种便捷的相干光源,适用于指定波长范围内的不间断调谐输出。作为一种临界腔,平行平面腔对腔镜准直角度的扰动较为敏感。本文以532 nm绿光泵浦KTiOPO4晶体临界相位匹配OPO为例,定量研究了这类光谐振腔的失谐特性。通过在理想准直位置附近扫描腔镜的偏角,观察了OPO输出随失谐角的变化。结果表明:该谐振腔对临界方向失谐的敏感程度远高于对非临界方向失谐的敏感程度;扩宽泵浦光束和提高泵浦光强都可以增大对准容限。此外,本文分析并解释了不同条件下OPO腔长对腔镜对准容限的影响。
Abstract
Objective

Optical parametric oscillators(OPOs)have been proven to be effective,coherent light sources that can expand the wavelengths of commercial lasers(typically limited to narrow emission lines and bands)to a broad range from visible to far-infraredbands. Q-switched lasers with high peak powers have significantly promoted the development and applications of OPOs with the following advantageous characteristics:system compactness(for example,two cavity mirrors and a nonlinear crystal),relatively high conversion efficiency,singly resonant operation,and frequency-agile tunability(for example,angle tuning).A plane-parallel cavity with a large mode volume is well-suited for Q-switched laser pumps.This type of OPO is widely adopted,for example,as a pump/seed source in nonlinear terahertz or mid-infrared(MIR)generation or directly as an MIR source,owing to the wide tuning range and ease of construction.As the earliest configuration in a laser resonator,a plane-parallel cavity is critically stable and sensitive to mirror misalignment.The misalignment of laser cavities,including those of argon ion,CO2,and Nd∶YAG lasers,has been analyzed previously;however,studies on OPO cavities have rarely been reported.In this study,we performed an experimental investigation on the misalignment characteristics of a plane-parallel cavity-based OPO.

Methods

In this study,an OPO based on a plane-parallel cavity structure was developed.A potassium titanyl phosphate(KTP)crystal was utilized as the nonlinear medium(cut at θ=60°,φ=0°,and 10 mm×7 mm×20 mm,anti-reflection(AR)-coated at 532 nm/800-900 nm/1300 1600 nm).A frequency-doubled Nd∶YAG laser(532 nm,10 ns,and 10 Hz)was employed as the pump source.Two flat mirrors(AR-coated at 532 nm/1300-1600 nm and highly reflection-coated at 800 900 nm)formed a singly resonant cavity.The ns-pulsed OPO was operated at a wavelength of 1514 nm via o→e(signal)+o(idler)critical phase matching.The cavity mirrors were precisely controlled using piezoelectric optical mounts for alignment.Each mount was equipped with two piezo actuators,which could provide a two-dimensional(2D)adjustment(axes 1 and 2 for output mirror M1 and axes 3 and 4 for input mirror M2)with an angular resolution of ≤0.7 μrad.

Results and Discussions

Typical output results(pulse envelopes and beam profile)of the KTP-OPO are presented in Fig.2.The piezoelectric optical mounts with a motion controller module facilitate quantitative analysis of the influence of mirror misalignment on the OPO output.The variation in the output pulse energy with angular tilt δxis measured while scanning each cavity mirror along two directions around the well-aligned position(δx=0),as presented by the 2D graphs in Fig.3.The subscripts x=1–4 correspond to the four actuators,axes 1–4,respectively.The four curves presented in Fig.3 present envelopes along the principal axis(with the other three δ=0).The full widths at half maximum of the curves(called alignment tolerance)from axes 1 to 4 are 0.171,1.861,0.177,and 1.933 mrad,respectively,which are determined at a pump beamdiameter Φ=4 mm,cavity length L=65 mm,and output pulse energy=6.6 mJ.The discrepancy between the two mirrors along the same direction(axes 1 and 3 and axes 2 and 4)is minimal,which is verified by alternating the two mounts.The tolerances along the horizontal direction(axes 2 and 4, y-principal dielectric axis)are approximately 10 times those along the vertical direction(axes 1 and 3, x-z-principal plane).This can be attributed to the critical phase matching configuration(Fig.4).As presented in Fig.5(a),the alignment tolerance increases with the beam size at a specific pump intensity and cavity length because a larger interaction region(cross-section)can provide more effective round trips for misaligned signal beams.The relationship between the tolerance andoutput energy,shown in Fig.5(b),demonstrates an increasing trend because a higheroutput energycorresponds to a higher single-pass gain(easier to build up).The alignment tolerances of different cavity lengths are compared at fixed input[Fig.6(a)]and output pulse energies[Fig.6(b)].In addition,the other output characteristics vary with the OPO cavity length.A longer cavity length results in a higher threshold and lower energy conversion efficiency(Fig.7).The divergent angles decrease with the cavity length at approximately equal output energies and beam sizes(left y-axis of Fig.8).Better beam quality and worse stability can be obtained with a more extended cavity(right y-axis of Fig.8),and the root-mean-square(RMS)of pulse energy fluctuation increases(3.09%→3.61%→3.96%).

Conclusions

Herein,we quantitatively characterize the mirror misalignment of a plane-parallel cavity-based OPO,which has been widely utilized as a convenient coherent light source with a desired wavelength.A green laser-pumped KTP-OPO equipped with piezoelectric optical mounts is constructed.An almost circular Gaussian beam with a wavelength of 1514 nm is delivered with a slope efficiency of ≥25% and a pulse energy fluctuation(RMS)of ≤4%. The output shrinkage is measured by scanning the cavity mirrors around a well-aligned position.The alignment appears to be significantly more sensitive in the critical direction than in the noncritical direction,which can be explained based on the phase-matching configuration.The alignment tolerance increases with the beam size and input intensity.In addition,the cavity length dependence is analyzed at specific input and output pulse energies.This paper presents a type of ns-pulsed,singly resonant,and critical phase-matched OPO with a wide-angle tuning capability.

付俏俏, 刘鹏翔, 祁峰, 李惟帆, 牛春草, 李伟, 郭丽媛, 汪业龙, 刘朝阳. 平行平面腔光学参量振荡器失谐特性实验研究[J]. 中国激光, 2022, 49(24): 2408002. Qiaoqiao Fu, Pengxiang Liu, Feng Qi, Weifan Li, Chuncao Niu, Wei Li, Liyuan Guo, Yelong Wang, Zhaoyang Liu. Characteristics of Mirror Misalignment of Plane-Parallel Cavity-Based Optical Parametric Oscillators[J]. Chinese Journal of Lasers, 2022, 49(24): 2408002.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!