光学学报, 2023, 43 (1): 0114001, 网络出版: 2023-01-06  

超冷原子冷却用集成全光纤1064 nm激光系统的研制 下载: 727次封面文章

Development of Integrated All-Fiber 1064 nm Laser System for Ultracold Atomic Cooling
谢昱 1,2梁昂昂 1,2李文文 1,2黄名山 1,2汪斌 1,*刘亮 1,**
作者单位
1 中国科学院上海光学精密机械研究所航天激光工程部,上海 201800
2 中国科学院大学材料科学与光电子技术学院,北京 100049
引用该论文

谢昱, 梁昂昂, 李文文, 黄名山, 汪斌, 刘亮. 超冷原子冷却用集成全光纤1064 nm激光系统的研制[J]. 光学学报, 2023, 43(1): 0114001.

Yu Xie, Ang′ang Liang, Wenwen Li, Mingshan Huang, Bin Wang, Liang Liu. Development of Integrated All-Fiber 1064 nm Laser System for Ultracold Atomic Cooling[J]. Acta Optica Sinica, 2023, 43(1): 0114001.

参考文献

[1] Prodan J V, Phillips W D, Metcalf H. Laser production of a very slow monoenergetic atomic beam[J]. Physical Review Letters, 1982, 49(16): 1149-1153.

[2] Lett P, Watts R, Westbrook C, et al. Observation of atoms laser cooled below the doppler limit[J]. Physical Review Letters, 1988, 61(2): 169-172.

[3] Chu S, Hollberg L, Bjorkholm J E, et al. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure[J]. Physical Review Letters, 1985, 55(1): 48-51.

[4] Raab E L, Prentiss M, Cable A, et al. Trapping of neutral sodium atoms with radiation pressure[J]. Physical Review Letters, 1987, 59(23): 2631-2634.

[5] Dalibard J, Cohen-Tannoudji C. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models[J]. Journal of the Optical Society of America B, 1989, 6(11): 2023-2045.

[6] Ménoret V, Vermeulen P, Le Moigne N, et al. Gravity measurements below 10-9 g with a transportable absolute quantum gravimeter[J]. Scientific Reports, 2018, 8: 12300.

[7] Wynands R, Weyers S. Atomic fountain clocks[J]. Metrologia, 2005, 42(3): S64-S79.

[8] Campbell S L, Hutson R B, Marti G E, et al. A Fermi-degenerate three-dimensional optical lattice clock[J]. Science, 2017, 358(6359): 90-94.

[9] Anderson M H, Ensher J R, Matthews M R, et al. Observation of Bose-Einstein condensation in a dilute atomic vapor[J]. Science, 1995, 269(5221): 198-201.

[10] Davis K B, Mewes M O, Andrews M R, et al. Bose-Einstein condensation in a gas of sodium atoms[J]. Physical Review Letters, 1995, 75(22): 3969-3973.

[11] Cornell E A, Wieman C E. Nobel lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments[J]. Reviews of Modern Physics, 2002, 74(3): 875-893.

[12] Ketterle W. Nobel lecture: when atoms behave as waves: Bose-Einstein condensation and the atom laser[J]. Reviews of Modern Physics, 2002, 74(4): 1131-1151.

[13] DeMarco B, Jin D. Onset of Fermi degeneracy in a trapped atomic gas[J]. Science, 1999, 285(5434): 1703-1706.

[14] DeMarco B, Papp S B, Jin D S. Pauli blocking of collisions in a quantum degenerate atomic Fermi gas[J]. Physical Review Letters, 2001, 86(24): 5409-5412.

[15] Greiner M, Mandel O, Esslinger T, et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms[J]. Nature, 2002, 415(6867): 39-44.

[16] Lewenstein M, Sanpera A, Ahufinger V, et al. Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond[J]. Advances in Physics, 2007, 56(2): 243-379.

[17] Bloch I, Dalibard J, Zwerger W. Many-body physics with ultracold gases[J]. Reviews of Modern Physics, 2008, 80(3): 885-964.

[18] Jördens R, Strohmaier N, Günter K, et al. A Mott insulator of Fermionic atoms in an optical lattice[J]. Nature, 2008, 455(7210): 204-207.

[19] Schneider U, Hackermüller L, Will S, et al. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice[J]. Science, 2008, 322(5907): 1520-1525.

[20] Billy J, Josse V, Zuo Z C, et al. Direct observation of Anderson localization of matter waves in a controlled disorder[J]. Nature, 2008, 453(7197): 891-894.

[21] van Zoest T, Gaaloul N, Singh Y, et al. Bose-Einstein condensation in microgravity[J]. Science, 2010, 328(5985): 1540-1543.

[22] Geiger R, Ménoret V, Stern G, et al. Detecting inertial effects with airborne matter-wave interferometry[J]. Nature Communications, 2011, 2: 474.

[23] Becker D, Lachmann M D, Seidel S T, et al. Space-borne Bose-Einstein condensation for precision interferometry[J]. Nature, 2018, 562(7727): 391-395.

[24] Corgier R, Amri S, Herr W, et al. Fast manipulation of Bose-Einstein condensates with an atom chip[J]. New Journal of Physics, 2018, 20(5): 055002.

[25] Aveline D C, Williams J R, Elliott E R, et al. Observation of Bose-Einstein condensates in an Earth-orbiting research lab[J]. Nature, 2020, 582(7811): 193-197.

[26] Deppner C, Herr W, Cornelius M, et al. Collective-mode enhanced matter-wave optics[J]. Physical Review Letters, 2021, 127(10): 100401.

[27] GaaloulN, MeisterM, CorgierR, et al. A space-based quantum gas laboratory at picokelvin energy scales[EB/OL]. (2022-01-18)[2021-02-05]. https://arxiv.org/abs/2201.06919.

[28] Wang L, Zhang P, Chen X Z, et al. Generating a picokelvin ultracold atomic ensemble in microgravity[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46(19): 195302.

[29] Yao H P, Luan T, Li C, et al. Comparison of different techniques in optical trap for generating picokelvin 3D atom cloud in microgravity[J]. Optics Communications, 2016, 359: 123-128.

[30] Luan T, Li Y F, Zhang X S, et al. Realization of two-stage crossed beam cooling and the comparison with Delta-kick cooling in experiment[J]. Review of Scientific Instruments, 2018, 89(12): 123110.

[31] 洪毅, 侯霞, 陈迪俊, 等. 基于Rb87调制转移光谱稳频技术研究[J]. 中国激光, 2021, 48(21): 2101003.

    Hong Y, Hou X, Chen D J, et al. Research on frequency stabilization technology of modulation transfer spectroscopy based on Rb87[J]. Chinese Journal of Lasers, 2021, 48(21): 2101003.

[32] Liu Q, Xie Y, Li L, et al. Development of an ultra-high vacuum system for a cold atom physics rack in space[J]. Vacuum, 2021, 190: 110192.

[33] 刘乾, 谢昱, 李琳, 等. 基于人工神经网络的超冷原子实验多参数自主优化系统[J]. 中国激光, 2021, 48(24): 2412001.

    Liu Q, Xie Y, Li L, et al. Multiparameter autonomous optimization system for ultracold atomic experiments based on artificial neural network[J]. Chinese Journal of Lasers, 2021, 48(24): 2412001.

[34] 刘乾, 谢昱, 李琳, 等. 基于红失谐高斯光束的冷原子束流长距离传输[J]. 光学学报, 2021, 41(21): 2102001.

    Liu Q, Xie Y, Li L, et al. Long-distance transmission of cold atomic beams based on red-detuned Gaussian beams[J]. Acta Optica Sinica, 2021, 41(21): 2102001.

[35] Arnold K J, Barrett M D. All-optical Bose-Einstein condensation in a 1.06 μm dipole trap[J]. Optics Communications, 2011, 284(13): 3288-3291.

[36] Condon G, Rabault M, Barrett B, et al. All-optical Bose-Einstein condensates in microgravity[J]. Physical Review Letters, 2019, 123(24): 240402.

[37] Savard T A, O’Hara K M, Thomas J E. Laser noise induced heating in far off resonance optical traps[J]. Physical Review A, 1997, 56(2): R1095-R1098.

谢昱, 梁昂昂, 李文文, 黄名山, 汪斌, 刘亮. 超冷原子冷却用集成全光纤1064 nm激光系统的研制[J]. 光学学报, 2023, 43(1): 0114001. Yu Xie, Ang′ang Liang, Wenwen Li, Mingshan Huang, Bin Wang, Liang Liu. Development of Integrated All-Fiber 1064 nm Laser System for Ultracold Atomic Cooling[J]. Acta Optica Sinica, 2023, 43(1): 0114001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!