Chinese Optics Letters, 2022, 20 (9): 093701, Published Online: Jun. 16, 2022  

Role of the interlayer interactions in ultrafast terahertz thermal dynamics of bilayer graphene

Tingyuan Jia 1,2,3Shaoming Xie 1,2Zeyu Zhang 1,2,3,4,*Qinxue Yin 1,3Chunwei Wang 1,2,3,5Chenjing Quan 1,2Xiao Xing 1Juan Du 1,2,3,4,**Yuxin Leng 1,2,3,5,***
Author Affiliations
1 State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
4 School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
5 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
Abstract
Bilayer graphene, which is highly promising for electronic and optoelectronic applications because of its strong coupling of the Dirac–Fermions, has been studied extensively for the emergent correlated phenomena with magic-angle manipulation. Due to the low energy linear type band gap dispersion relationship, graphene has drawn an amount of optoelectronic devices applications in the terahertz region. However, the strong interlayer interactions modulated electron-electron and electron-phonon coupling, and their dynamics in bilayer graphene have been rarely studied by terahertz spectroscopy. In this study, the interlayer interaction influence on the electron-electron and the electron-phonon coupling has been assigned with the interaction between the two graphene layers. In the ultrafast cooling process in bilayer graphene, the interlayer interaction could boost the electron-phonon coupling process and oppositely reduce the electron-electron coupling process, which led to the less efficient thermalization process. Furthermore, the electron-electron coupling process is shown to be related with the electron momentum scattering time, which increased vividly in bilayer graphene. Our work could provide new insights into the ultrafast dynamics in bilayer graphene, which is of crucial importance for designing multi-layer graphene-based optoelectronic devices.

Tingyuan Jia, Shaoming Xie, Zeyu Zhang, Qinxue Yin, Chunwei Wang, Chenjing Quan, Xiao Xing, Juan Du, Yuxin Leng. Role of the interlayer interactions in ultrafast terahertz thermal dynamics of bilayer graphene[J]. Chinese Optics Letters, 2022, 20(9): 093701.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!