光学学报, 2024, 44 (2): 0216001, 网络出版: 2024-01-11   

Bi2Ga3.985O9∶1.5%Fe3+,Eu3+长余辉材料的制备及光学性能研究

Preparation and Optical Properties of Bi2Ga3.985O9∶1.5%Fe3+,Eu3+ Persistent Luminescent Nanoparticles
作者单位
1 喀什大学化学与环境科学学院新疆特色药食用植物资源化学实验室,新疆 喀什 844000
2 上海工程技术大学化学化工学院前沿医学技术研究院,上海 201620
摘要
采用共沉淀法制备了Bi2-xGa3.985O9∶1.5%Fe3+xEu3+(BGO∶1.5%Fe3+xEu3+x=0~2%)长余辉纳米粒子(PLNP),详细研究了Eu3+掺杂浓度及煅烧温度对BGO∶1.5%Fe3+ PLNP晶体结构和光学性质的影响。结果显示,最佳的PLNP组成为Bi1.99Ga3.985O9∶1.5%Fe3+,1%Eu3+,属于莫来石晶体结构,发射峰处于798 nm,在900 ℃煅烧1 h时,可获得高纯度的BGO∶1.5%Fe3+,1%Eu3+ PLNP,其平均电子陷阱能级深度为0.676 eV。与Fe3+单掺杂BGO∶1.5%Fe3+ PLNP相比,Eu3+共掺杂BGO∶1.5%Fe3+,1%Eu3+ PLNP后,荧光寿命(τav)从13.77 s增大至15.56 s,余辉发光时间从3 h延长至8 h以上。由于共掺杂BGO∶1.5%Fe3+,1%Eu3+ PLNP中存在从Eu3+到Fe3+的能量传递,共掺杂PLNP的余辉强度增大,发光时间延长。制备了长波长发射、具有余辉发光性能的BGO∶1.5%Fe3+,1%Eu3+ PLNP,该材料在生物成像、疾病检测及生物传感等领域具有巨大的应用潜力。
Abstract
Objective

Near-infrared (NIR) persistent luminescence nanoparticles (PLNPs) with strong tissue penetration can avoid light scattering and fluoresce interference of tissues caused by in situ excitation, and they can be employed in the research on biological imaging and tumor diagnosis and treatment. Currently, the majority of reported PLNPs are based on Cr3+ as luminescent centers. The toxicity of heavy metal Cr3+-doped materials poses a potential safety hazard to long-term in vivo imaging tracking and therapy. However, Fe3+ as a basic element of the human body is a good candidate for NIR luminescence center with broadband emission. The longer and stronger emission wavelength of NIR, coupled with its superior penetration ability, further enhances the tissue penetration depth for biological applications. Thus, it is imperative to develop a friendly NIR-PLNP with enhanced luminescence performance for Fe3+-doped materials. We aim to develop Bi2Ga3.985O9∶1.5%Fe3+, 1%Eu3+ (BGO∶1.5%Fe3+, 1%Eu3+) NIR-emission PLNP materials with stronger luminescence intensity and longer emission wavelength by co-doping Eu3+ ions based on BGO∶1.5%Fe3+ PLNP material. The prepared PLNP has excellent NIR luminescence and plays an important role in the in-vivo imaging without background noise and deep tissues.

Methods

BGO∶1.5%Fe3+,xEu3+ (x=0-2%) PLNP materials are prepared by the co-precipitation method. Meanwhile, we investigate the effects of the Eu3+ concentration and the calcination temperature on the luminescent properties and crystal structure of BGO∶1.5%Fe3+ PLNP material. The surface shape, element distribution mappings, valence distribution, energy transfer between Fe3+ and Eu3+, and luminescence lifetime of the BGO∶1.5%Fe3+, 1%Eu3+ PLNP material are observed and analyzed.

Results and Discussions

Firstly, the PLNP material characterization and X-ray diffraction peaks of the BGO∶1.5%Fe3+,xEu3+ (x=0-2%) PLNP materials are consistent with the Bi2Ga4O9 planes crystal (PDF#76-2240). The TEM picture shows that the average grain diameter of BGO∶1.5%Fe3+, 1%Eu3+ PLNP material is about 100 nm (Fig. 1). The EDS spectra and the element distribution mappings of BGO∶1.5%Fe3+, 1%Eu3+ PLNP material indicate the presence of Bi, Ga, O, Fe, and Eu elements (Fig. 2). The XPS spectra of BGO∶1.5%Fe3+, 1%Eu3+ PLNP material reveal the presence of Bi, Ga, O, Fe, and Eu elements in a trivalent state (Fig. 3). Additionally, the BGO∶1.5%Fe3+, 1%Eu3+ PLNP material exhibits strong NIR emission at 798 nm with the highest luminescence intensity. The intensity of BGO∶1.5%Fe3+ PLNP material is enhanced by co-doping the Eu3+ ions to obtain BGO∶1.5%Fe3+, 1%Eu3+. The excitation spectra show that the four peaks are at 307 nm, 422 nm, 464 nm, and 636 nm, and then BGO∶1.5%Fe3+, 1%Eu3+ with the strongest is obtained [Figs. 4(a)-(b)]. BGO∶1.5%Fe3+, 1%Eu3+ improves the luminescence intensity and duration due to the energy transfer from Eu3+ to Fe3+ [Fig. 5(a)]. The two-dimensional thermoluminescence curves of BGO∶1.5%Fe3+, 1%Eu3+ PLNP picture show that the average electron trap energy level depth is 0.676 eV [Fig. 5(b)]. The CIE color coordinates picture shows that the co-doping of Eu3+ increases the red luminescence intensity of the material (Fig. 6). The intensity of BGO∶1.5%Fe3+ PLNP material is improved, and the average luminescence lifetime (τav) increases from 13.77 s to 15.56 s by co-doped Eu3+ ions (Table 2). The luminescence time of PLNPs is extended from 3 h to more than 8 h [Fig. 7(b)]. Finally, under the calcination temperature of 900 ℃ and calcination time of 1 h, the BGO∶1.5%Fe3+, 1%Eu3+ PLNP material has good crystallinity and NIR luminescence intensity (Fig. 8).

Conclusions

BGO∶1.5%Fe3+, xEu3+ (x=0-2%) PLNPs are prepared by the co-precipitation method. The effects of calcination temperature and co-doping amount of Eu3+ ions on the luminescence properties of BGO∶1.5%Fe3+ PLNP are investigated. The excitation and emission spectra analysis demonstrates the existence of energy transfer from Eu3+ to Fe3+, which enhances the luminescence intensity and time of PLNPs in the NIR emission (798 nm). The optimal form is obtained to the BGO∶1.5%Fe3+, 1%Eu3+ with 798 nm emission, and the average electron trap energy level depth is 0.676 eV. The average luminescence lifetime (τav) of BGO∶1.5%Fe3+ and BGO∶1.5%Fe3+, 1%Eu3+ increases from 13.77 s to 15.56 s, and the luminescence time extends from 3 h to more than 8 h. Thus, NIR luminescence has a high penetration depth by doped Fe3+, which is conducive to luminescent imaging. The NIR luminescence with 798 nm emission can eliminate the influence of spontaneous and scattered light, and improve the sensitivity and signal-to-noise ratio of detection and imaging. Therefore, the proposed material will have great potential applications in bio-sensing, deep tissue imaging, and image-guided therapy.

茹鲜古丽·艾外力, 孙艳美, 库尔班江·努尔麦提, 赵天骐, 热娜古丽·阿不都热合曼, 尹学博. Bi2Ga3.985O9∶1.5%Fe3+,Eu3+长余辉材料的制备及光学性能研究[J]. 光学学报, 2024, 44(2): 0216001. Aiwaili Ruxiangul, Yanmei Sun, Nuermaiti Kuerbanjiang, Tianqi Zhao, Abdurahman Renagul, Xuebo Yin. Preparation and Optical Properties of Bi2Ga3.985O9∶1.5%Fe3+,Eu3+ Persistent Luminescent Nanoparticles[J]. Acta Optica Sinica, 2024, 44(2): 0216001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!