Advanced Photonics, 2024, 6 (2): 026006, Published Online: Mar. 27, 2024  

Digital twin modeling and controlling of optical power evolution enabling autonomous-driving optical networks: a Bayesian approach

Author Affiliations
Shanghai Jiao Tong University, State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai, China
Abstract
Optical networks are evolving toward ultrawide bandwidth and autonomous operation. In this scenario, it is crucial to accurately model and control optical power evolutions (OPEs) through optical amplifiers (OAs), as they directly affect the signal-to-noise ratio and fiber nonlinearities. However, a fundamental contradiction arises between the complex physical phenomena in optical transmission and the required precision in network control. Traditional theoretical methods underperform due to ideal assumptions, while data-driven approaches entail exorbitant costs associated with acquiring massive amounts of data to achieve the desired level of accuracy. In this work, we propose a Bayesian inference framework (BIF) to construct the digital twin of OAs and control OPE in a data-efficient manner. Only the informative data are collected to balance the exploration and exploitation of the data space, thus enabling efficient autonomous-driving optical networks (ADONs). Simulations and experiments demonstrate that the BIF can reduce the data size for modeling erbium-doped fiber amplifiers by 80% and Raman amplifiers by 60%. Within 30 iterations, the optimal controlling performance can be achieved to realize target signal/gain profiles in links with different types of OAs. The results show that the BIF paves the way to accurately model and control OPE for future ADONs.

Xiaomin Liu, Yihao Zhang, Yuli Chen, Yichen Liu, Meng Cai, Qizhi Qiu, Mengfan Fu, Lilin Yi, Weisheng Hu, Qunbi Zhuge. Digital twin modeling and controlling of optical power evolution enabling autonomous-driving optical networks: a Bayesian approach[J]. Advanced Photonics, 2024, 6(2): 026006.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!