激光与光电子学进展, 2024, 61 (5): 0532001, 网络出版: 2024-02-29  

基于非绝热项讨论的隧穿延迟时间调控

Regulation of Nonadiabaticity-Induced Tunneling Delay Time
作者单位
江苏大学物理与电子工程学院,江苏 镇江 212013
摘要
最近阿秒钟实验中的隧穿延迟现象引起了人们对电子隧穿过程的非绝热性和隧穿时间的讨论。在强场条件下电子的隧穿延迟通常可以用Keldysh参数来预测,然而在少周期含包络正交偏振双色激光场作用下,Keldysh参数对隧穿延迟时间的预测与数值模拟结果不符,此时电子隧穿初始动量与隧穿过程中消耗的能量是影响隧穿延迟现象的重要因素。因此,有必要对上述激光场作用下两种因素对瞬时电离概率的影响进行讨论。通过改变正交偏振双色激光场强比以及相位差的方式,将它们对隧穿延迟时间的影响差异化,实现了对隧穿延迟时间的调控。最后,通过比较两者随电离时间的变化规律确定了少周期含包络正交双色激光场中隧穿耗能在隧穿延迟时间影响因素中的主导地位。这些发现有助于量化分析非绝热隧穿延迟时间,并为调控超快非绝热隧穿电离过程提供新思路。
Abstract
Recently, tunneling delay time in attosecond experiments leads to discussions about the nonadiabaticity in tunneling process. Under strong field condition, the tunneling delay time usually can be predicted by Keldysh parameter. However, this prediction will fail when we use a few-cycle orthogonal polarized two-color laser field with an envelope. At this time, the initial momentum of photoelectron and the energy consumed in the tunneling process are two important factors that affect the tunneling delay time. Therefore, we find the relationship between these two factors with ionization probability under the above-mentioned laser field. By changing the field intensity ratio and phase difference of the orthogonal polarized two-color lasers, their influence on the tunneling delay time is identified separately, meanwhile, the regulation of tunneling delay time is achieved. Finally, we find that the energy consumed in the tunneling process is a dominant factor influencing the tunneling delay time. These findings contribute to the quantitative analysis of non-adiabatic tunneling delay time and provide new ideas for regulating the ultrafast non-adiabatic tunneling process.

周涛, 许梦瑶, 张赛, 许伯强, 崔森. 基于非绝热项讨论的隧穿延迟时间调控[J]. 激光与光电子学进展, 2024, 61(5): 0532001. Tao Zhou, Mengyao Xu, Sai Zhang, Boqiang Xu, Sen Cui. Regulation of Nonadiabaticity-Induced Tunneling Delay Time[J]. Laser & Optoelectronics Progress, 2024, 61(5): 0532001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!