人工晶体学报, 2020, 49 (7): 1326, 网络出版: 2020-08-18   

生物质炭的杂元素掺杂及其在电极中的应用

Heteroelement Doped Biomass Carbon and Its Application in Electrodes
作者单位
桂林理工大学材料科学与工程学院,有色金属及材料加工新技术教育部重点实验室,桂林 541004
引用该论文

覃爱苗, 郑爽, 魏立学, 刘志森. 生物质炭的杂元素掺杂及其在电极中的应用[J]. 人工晶体学报, 2020, 49(7): 1326.

QIN Aimiao, ZHENG Shuang, WEI Lixue, LIU Zhisen. Heteroelement Doped Biomass Carbon and Its Application in Electrodes[J]. Journal of Synthetic Crystals, 2020, 49(7): 1326.

参考文献

[1] 杜 锐,覃爱苗,韦 春,等.生物质炭材料的制备及电化学应用研究进展[J].材料导报,2014,28(5): 93-97.

[2] Sun L, Tian C, Li M, et al. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors[J]. Journal of Materials Chemistry A,2013,1(21): 6462.

[3] Fey G T K, Chen C L. High-capacity carbons for lithium-ion batteries prepared from rice husk[J]. Journal of Power Sources,2001,97-8: 47-51.

[4] Zhang Y, Chen L, Meng Y, et al. Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey[J]. Journal of Power Sources,2016,335: 20-30.

[5] Ou J, Yang L, Xi X. Biomass inspired nitrogen doped porous carbon anode with high performance for lithium ion batteries[J]. Chinese Journal of Chemistry,2016,34(7): 727-732.

[6] Li Y, Wang H, Huang B, et al. Mo2C-induced solid-phase synthesis of ultrathin MoS2 nanosheet arrays on bagasse-derived porous carbon frameworks for high-energy hybrid sodium-ion capacitors[J]. Journal of Materials Chemistry A,2018,6(30): 14742-14751.

[7] Yao C, Shin Y, Wang L Q, et al. Hydrothermal dehydration of aqueous fructose solutions in a closed system[J]. Journal of Physical Chemistry C, 2007,111(42): 15141-15145.

[8] Wang Q, Li H, Chen L Q, et al. Monodispersed hard carbon spherules with uniform nanopores[J]. Carbon, 2001,39(14): 2211-2214.

[9] Chen Y, Xiang K, Zhu Y, et al. Bio-templated fabrication of lotus root-like Li3V2(PO4)3/C composite from dandelion for use in lithium-ion batteries[J]. Ceramics International,2019,45(10): 13438-13446.

[10] Chen Y, Xiang K, Zhu Y, et al. Bio-template fabrication of nitrogen-doped Li3V2(PO4)3/carbon composites from cattail fibers and their high-rate performance in lithium-ion batteries[J]. Journal of Alloys and Compounds,2019,782: 89-99.

[11] 覃 韬,林起浪,郑敏枝.锂离子电池炭负极材料结构及嵌锂机理研究进展[J].材料导报,2009,23(5): 34-37.

[12] 刘芳延.基于棕纤维素制备炭基复合材料及其电化学性能[D].哈尔滨: 东北林业大学,2015: 6-9.

[13] Jin H, Wang X, Gu Z, et al. Distillers dried grains with soluble (DDGS) bio-char based activated carbon for supercapacitors with organic electrolyte tetraethylammonium tetrafluoroborate[J]. Journal of Environmental Chemical Engineering,2014,2(3): 1404-1409.

[14] Shen T, Xia X H, Xie D, et al. Encapsulating silicon nanoparticles into mesoporous carbon forming pomegranate-structured microspheres as a high-performance anode for lithium ion batteries[J]. Journal of Materials Chemistry A,2017,5(22): 11197-11203.

[15] Huang Z, Yao M, Jiang Z, et al. Impact of Fe doping on performance of NaTi2(PO4)3/C anode for aqueous lithium ion battery[J]. Solid State Ionics,2018,327: 123-128.

[16] Jia G F, Liu S Q, Yang G W, et al. The multiple effects of Al-doping on the structure and electrochemical performance of LiNi0.5Mn0.5O2 as cathode material at high voltage[J]. Ionics,2018,24(12): 3705-3715.

[17] Cho W, Lim Y J, Lee S M, et al. Facile Mn surface doping of Ni-rich layered cathode materials for lithium ion batteries[J]. Acs Applied Materials & Interfaces,2018,10(45): 38915-38921.

[18] Yi T F, Yang S Y, Li X Y, et al. Sub-micrometric Li4-xNaxTi5O12(0≤x≤0.2) spinel as anode material exhibiting high rate capability[J]. Journal of Power Sources,2014,246: 505-511.

[19] Lee S H, Kim H K, Yun Y S, et al. A novel high-performance cylindrical hybrid supercapacitor with Li4-xNaxTi5O12/activated carbon electrodes[J]. International Journal of Hydrogen Energy,2014,39(29): 16569-16575.

[20] Wang P, Li P, Yi T F, et al. Enhanced lithium storage capability of sodium lithium titanate via lithium-site doping[J]. Journal of Power Sources,2015,297: 283-294.

[21] Song J, Yu Z, Gordin M L, et al. Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries[J]. Nano Letters,2016, 16(2): 864-870.

[22] Tabassum H, Zou R, Mahmood A, et al. A universal strategy for hollow metal oxide nanoparticles encapsulated into B/N co-doped graphitic nanotubes as high-performance lithium-ion battery Anodes[J]. Advanced Materials,2018,30(8): 1705441.

[23] Ma X, Ning G, Kan Y, et al. Synthesis of S-doped mesoporous carbon fibres with ultrahigh S concentration and their application as high performance electrodes in supercapacitors[J]. Electrochimica Acta,2014,150: 108-113.

[24] He H, Huang D, Tang Y, et al. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage[J]. Nano Energy,2019,57: 728-736.

[25] Wang Y, Gu H T, Song J H, et al. Suppressing Mn reduction of Li-rich Mn-based cathodes by F-doping for advanced lithium-ion batteries[J]. Journal of Physical Chemistry C,2018,122(49): 27836-27842.

[26] Jia H, Gao P, Yang J, et al. Novel Three-dimensional mesoporous silicon for high power lithium-ion battery anode material[J]. Advanced Energy Materials,2011,1(6): 1036-1039.

[27] Liu P, Zhang Y, Yan J, et al. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption[J]. Chemical Engineering Journal,2019,368: 285-298.

[28] Zhang Y, Mori T, Ye J, et al. Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation[J]. Journal of the American Chemical Society,2010,132(18): 6294-5.

[29] Liu D, Yu S, Shen Y, et al. Polyaniline coated boron doped biomass derived porous carbon composites for supercapacitor electrode materials[J]. Industrial & Engineering Chemistry Research,2015,54(50): 12570-12579.

[30] Denis P A, Faccio R Mombru A W. Is it possible to dope single-walled carbon nanotubes and graphene with sulfur?[J]. Chemphyschem.,2009,10(4): 715-722.

[31] Hu X, Long Y, Fan M, et al. Two-dimensional covalent organic frameworks as self-template derived nitrogen-doped carbon nanosheets for eco-friendly metal-free catalysis[J]. Applied Catalysis B-Environmental,2019,244: 25-35.

[32] Tang C, Wang H F, Chen X, et al. Topological defects in metal-free nanocarbon for oxygen electrocatalysis[J]. Advanced Materials,2016,28(32): 6845-6851.

[33] Latorre-Sanchez M, Primo A Garcia H. P-doped graphene obtained by pyrolysis of modified alginate as a photocatalyst for hydrogen generation from water-methanol mixtures[J]. Angewandte Chemie-International Edition,2013,52(45): 11813-11816.

[34] Duan C C, Kee R, Zhu H Y, et al. Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production[J]. Nature Energy,2019,4(3): 230-240.

[35] Gao K, Wang B, Tao L, et al. Efficient metal-free electrocatalysts from N-doped carbon nanomaterials: mono-doping and co-doping[J]. Advanced Materials,2019,31(13): 1805121.

[36] Guo N, Li M, Wang Y, et al. N-doped hierarchical porous carbon prepared by simultaneous-activation of KOH and NH3 for high performance supercapacitors[J]. RSC Advances,2016,6(103): 101372-101379.

[37] Xiang C, Lv T, Okonkwo C A, et al. Nitrogen-doped bagasse-derived carbon/ low Pt composite as counter electrodes for high efficiency dye-sensitized solar cell[J]. Journal of the Electrochemical Society,2017,164(4): H203-H210.

[38] Wang B, Wang Y, Peng Y, et al. 3-dimensional interconnected framework of N-doped porous carbon based on sugarcane bagasse for application in supercapacitors and lithium ion batteries[J]. Journal of Power Sources,2018,390: 186-196.

[39] Wang B, Wang Y, Peng Y, et al. Nitrogen-doped biomass-based hierarchical porous carbon with large mesoporous volume for application in energy storage[J]. Chemical Engineering Journal,2018,348: 850-859.

[40] Wan L, Li X, Li N, et al. Multi-heteroatom-doped hierarchical porous carbon derived from chestnut shell with superior performance in supercapacitors[J]. Journal of Alloys and Compounds,2019,790: 760-771.

[41] Luo W, Wang B, Heron C G, et al. Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation[J]. Nano Letters,2014,14(4): 2225-2229.

[42] Chen L F, Zhang X D, Liang H W, et al. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors[J]. ACS Nano,2012,6(8): 7092-7102.

[43] Shi N, Jiang X, Zhang Y, et al. Preparation and performance of N-doped carbon coated Li4Ti5O12 as anode material for lithium-ion batteries[J]. Chemical Journal of Chinese Universities-Chinese,2015,36(5): 981-988.

[44] Lin G, Ma R, Zhou Y, et al. KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction[J]. Electrochimica Acta,2018,261: 49-57.

[45] Imtiaz M, Chen Z, Zhu C, et al. In situ growth of beta-FeOOH on hierarchically porous carbon as anodes for high-performance lithium-ion batteries[J]. Electrochimica Acta,2018,283: 401-409.

[46] Wang C, Wu D, Wang H, et al. Biomass derived nitrogen-doped hierarchical porous carbon sheets for supercapacitors with high performance[J]. Journal of Colloid and Interface Science,2018,523: 133-143.

[47] Rehman A, Park S J. Tunable nitrogen-doped microporous carbons: delineating the role of optimum pore size for enhanced CO2 adsorption[J]. Chemical Engineering Journal,2019,362: 731-742.

[48] Zheng F, Liu D, Xia G, et al. Biomass waste inspired nitrogen-doped porous carbon materials as high-performance anode for lithium-ion batteries[J]. Journal of Alloys and Compounds,2017,693: 1197-1204.

[49] Lu J, Bo X, Wang H, et al. Nitrogen-doped ordered mesoporous carbons synthesized from honey as metal-free catalyst for oxygen reduction reaction[J]. Electrochimica Acta,2013,108: 10-16.

[50] Bing X U E, Yi T A N. Research progress on lithium titanate as anode material in lithium-ion battery[J]. Journal of Inorganic Materials,2018,33(5): 475.

[51] Li Y, Wei L, Liao L, et al. Ultrathin porous interconnected carbon nanosheets derived from sisal fibers for efficient Li-ion battery anodes[J]. Materials Express,2019,9(2): 112-122.

[52] Bruce P G, Scrosati B Tarascon J M. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemie-International Edition,2008,47(16): 2930-2946.

[53] Tsai S Y, Muruganantham R, Tai S H, et al. Coffee grounds-derived carbon as high performance anode materials for energy storage applications[J]. Journal of the Taiwan Institute of Chemical Engineers,2019,97: 178-188.

[54] Wang J, Yang Z, Pan F, et al. Phosphorus-doped porous carbon derived from rice husk as anode for lithium ion batteries[J]. RSC Advances,2015,5(68): 55136-55142.

[55] Paraknowitsch J P, Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications[J]. Energy & Environmental Science,2013,6(10): 2839-2855.

[56] Yu X, Zhang K, Tian N, et al. Biomass carbon derived from sisal fiber as anode material for lithium-ion batteries[J]. Materials Letters,2015,142: 193-196.

[57] Du R, Tong Z, Wei C, et al. Preparation of activated carbons from sisal fibers as anode materials for lithium ion batteries[J]. International Journal of Electrochemical Science,2016,11(10): 8418-8429.

[58] Du R, Tong Z, Wei C, et al. Sulfur/sisal fiber carbons composites as anode materials for lithium-ion batteries[J]. International Journal of Electrochemical Science,2017,12(6): 5581-5586.

[59] Wang D, Zhang K, Liao L, et al. Synthesis of nitrogen and sulfur co-doped sisal fiber carbon and its electrochemical performance in lithium-ion battery[J]. International Journal of Electrochemical Science,2019,14(1): 102-113.

[60] Zhao H, Gao Y, Wang J, et al. Egg yolk-derived phosphorus and nitrogen dual doped nano carbon capsules for high-performance lithium ion batteries[J]. Materials Letters,2016,167: 93-97.

[61] Ma W, Xie L, Dai L, et al. Influence of phosphorus doping on surface chemistry and capacitive behaviors of porous carbon electrode[J]. Electrochimica Acta,2018,266: 420-430.

[62] Xiong J, Pan Q, Zheng F, et al. N/S co-doped carbon derived from cotton as high performance anode materials for lithium ion batteries[J]. Frontiers in Chemistry,2018,6: 78.

[63] Wu P, Shao G, Guo C, et al. Long cycle life, low self-discharge carbon anode for Li-ion batteries with pores and dual-doping[J]. Journal of Alloys and Compounds,2019,802: 620-627.

[64] Wu F C, Tseng R L, Hu C C, et al. Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors[J]. Journal of Power Sources,2004,138(1-2): 351-359.

[65] Wang D W, Li F, Chen Z G, et al. Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor[J]. Chemistry of Materials,2008,20(22): 7195-7200.

[66] Wu X X, Radovic L R. Ab Initio molecular orbital study on the electronic structures and reactivity of boron-substituted carbon[J]. The Journal of Physical Chemistry A,2004,108(42): 9180-9187.

[67] Zou K, Deng Y, Chen J, et al. Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors[J]. Journal of Power Sources,2018,378: 579-588.

[68] Huang G G, Wang Y, Zhang T Y, et al. High-performance hierarchical N-doped porous carbons from hydrothermally carbonized bamboo shoot shells for symmetric supercapacitors[J]. Journal of the Taiwan Institute of Chemical Engineers,2019,96: 672-680.

[69] Han J, Ping Y, Li J, et al. One-step nitrogen, boron codoping of porous carbons derived from pomelo peels for supercapacitor electrode materials[J]. Diamond and Related Materials,2019,96: 176-181.

[70] Yi J, Qing Y, Wu C, et al. Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors[J]. Journal of Power Sources,2017,351: 130-137.

[71] Guo D, Xin R, Wang Y, et al. N-doped carbons with hierarchically micro- and mesoporous structure derived from sawdust for high performance supercapacitors[J]. Microporous and Mesoporous Materials,2019,279: 323-333.

[72] Xiao L, Cao Y, Xiao J, et al. A Soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life[J]. Advanced Materials,2012,24(9): 1176-1181.

[73] Schuster J, He G, Mandlmeier B, et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries[J]. Angewandte Chemie-International Edition,2012,51(15): 3591-3595.

[74] Qu D, Li R, Zhu X, et al. Performances of platinum and nitrogen dual-doped ordered mesoporous carbon as sulfur host for Li-S battery[J]. International Journal of Electrochemical Science,2018,13(11): 11294-11322.

[75] Manthiram A, Fu Y, Su Y S. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research,2013,46(5): 1125-1134.

[76] Song Y, Wang H, Ma Q, et al. Dandelion derived nitrogen-doped hollow carbon host for encapsulating sulfur in lithium sulfur battery[J]. ACS Sustainable Chemistry & Engineering,2018,7(3): 3042-3051.

[77] Babu D B, Ramesha K. Melamine assisted liquid exfoliation approach for the synthesis of nitrogen doped graphene-like carbon nano sheets from bio-waste bagasse material and its application towards high areal density Li-S batteries[J], Carbon.2019,144: 582-590.

[78] Hou T Z, Chen X, Peng H J, et al. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries[J], Small.2016,12(24): 3283-3291.

[79] Zhu L, Jiang H, Ran W, et al. Turning biomass waste to a valuable nitrogen and boron dual-doped carbon aerogel for high performance lithium-sulfur batteries[J]. Applied Surface Science,2019,489: 154-164.

[80] Huang M, Yang J, Xi B, et al. Enhancing kinetics of Li-S batteries by graphene-like N,S-codoped biochar fabricated in NaCl non-aqueous ionic liquid[J]. Science China-Materials,2019,62(4): 455-464.

[81] Zhu Q, Deng H, Su Q, et al. A free-standing nitrogen-doped porous carbon foam electrode derived from melaleuca bark for lithium-sulfur batteries[J]. Electrochimica Acta,2019,293: 19-24.

[82] Wei Y, Yan Y, Zou Y, et al. The ternary PANI@BDC/S composite cathode with enhanced electrochemical performance in lithium-sulfur batteries[J]. Journal of Electroanalytical Chemistry,2019,839: 149-159.

覃爱苗, 郑爽, 魏立学, 刘志森. 生物质炭的杂元素掺杂及其在电极中的应用[J]. 人工晶体学报, 2020, 49(7): 1326. QIN Aimiao, ZHENG Shuang, WEI Lixue, LIU Zhisen. Heteroelement Doped Biomass Carbon and Its Application in Electrodes[J]. Journal of Synthetic Crystals, 2020, 49(7): 1326.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!