激光与光电子学进展, 2024, 61 (15): 1500001, 网络出版: 2024-04-03  

中国光学十大进展:反手性拓扑光子态(特邀)【增强内容出版】

China's Top 10 Optical Breakthroughs: Antichiral Topological Photonic States (Invited)
作者单位
华南理工大学物理与光电学院,广东 广州 510641
摘要
反手性拓扑光子态是具有抗背向散射及免疫缺陷特性的新型波导态,其在拓扑光子晶体的两个平行边界沿相同方向单向传输,在拓扑激光、集成光路、量子信息等领域展示出应用潜力。本文聚焦反手性拓扑光子态研究进展,从Dirac模型出发,推演经典Haldane模型、反手性Haldane模型以及异质Haldane模型,并展示不同拓扑态的传输行为。讨论手性边界态、反手性边界态以及单向体态在光子晶体中的实现,重点介绍基于反手性拓扑光子态的紧凑单向波导、拓扑环形腔、拓扑分束器等拓扑光学器件。最后针对反手性拓扑光子态研究面临的关键问题、未来发展趋势进行分析和展望。
Abstract
Antichiral topological photonic states are a new type of waveguide states that are robust against backscattering and immune to defects. They propagate unidirectionally in the same direction along two parallel boundaries of topological photonic crystal and show broad application potential in topological lasers, integrated optical circuits, and quantum information. This review focuses on the research progress in antichiral topological photonic states, starting from the Dirac model and derivation of the classical Haldane model, antichiral Haldane model, and heterogeneous Haldane model, which demonstrate the transmission behavior of different types of topological photonic states. In addition, the implementation of chiral edge states, antichiral edge states, and one-way bulk states in photonic crystals is discussed. Next, the construction of topological optical devices based on antichiral topological photonic states, such as compact unidirectional waveguides, topological ring cavities, and topological beam splitter, are introduced. Finally, the critical issues and future development trends in research on antichiral topological photonic states are analyzed.

纪子韬, 陈剑锋, 李志远. 中国光学十大进展:反手性拓扑光子态(特邀)[J]. 激光与光电子学进展, 2024, 61(15): 1500001. Zitao Ji, Jianfeng Chen, Zhiyuan Li. China's Top 10 Optical Breakthroughs: Antichiral Topological Photonic States (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(15): 1500001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!