首页 > 论文 > 光学学报 > 32卷 > 5期(pp:0512006--1)

阴影叠栅相移非线性误差补偿算法研究

Compensating Algorithm for the Nonlinear Phase-Shift Error for Phase-Shifting Shadow Moiré Technique

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

相移阴影叠栅干涉场的相位(高度)存在非线性关系,而传统的相移阴影叠栅技术往往忽略了相位与高度的非线性关系,从而在测量系统中引入测量误差。对此提出了一种基于迭代相位解调自调算法相移阴影叠栅技术,该方法利用最小二乘技术获得相移量估算值,利用该估算值通过迭代算法消除相移阴影叠栅的全场相位误差,从而得到正确的相位分布。模拟计算表明该方法可以有效解决相移不均产生的相位测量误差问题,且可实现光栅移动量的精确估算,其误差不超过3.4%。对比实验进一步说明了所提出方法的正确性和优越性。

Abstract

Due to the nonlinear nature of height-phase relation, the traditional phase shifting shadow Moiré can only be fulfilled under certain approximations. Thus a systematic error source is introduced. Therefore, a general phase extraction algorithm with arbitrary phase step based on iterative self-tuning algorithm is proposed. In the proposed method, the estimation of phase shift is calibrated by the least squares fitting in spatial domain. Then, the accurate phase is obtained by an iterative process. Numerical experiments show that the proposed method can effectively minimize the nonuniform phase-shift error and can determinate the precise phase shifts during the process of demodulation. In the noisy case, the calibration error of the proposed is less than 3.4%. The experimental results prove the effectiveness of this technique. The proposed method improves measurable depth range.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O439

DOI:10.3788/aos201232.0512006

所属栏目:仪器,测量与计量

基金项目:国家973计(2009CB724207)和国家自然科学基金(50975228)资助课题)

收稿日期:2011-11-15

修改稿日期:2011-12-30

网络出版日期:--

作者单位    点击查看

杜虎兵:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049西安航空技术高等专科学校, 陕西 西安 710077
赵宏:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
李兵:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
赵金磊:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
曹士旭:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049

联系人作者:杜虎兵(xh.dhub@stu.xjtu.edu.cn)

备注:杜虎兵(1976—),男,讲师,博士研究生,主要从事光电检测和干涉图分析等方面的研究。

【1】M. Servin, J. C. Estrada, J. A. Quiroga. The general theory of phase shifting algorithms [J]. Opt. Express, 2009, 17(24): 21867~21881

【2】J. F. Mosio, M. Servin, J. C. Estrada et al.. Phasorial analysis of detuning error in temporal phaseshifting algorithms [J]. Opt. Express, 2009, 17(7): 5618~5623

【3】P. Hariharan, B. F. Oreb, T. Eiju. Digital phase-shifting interferometry: a simple error-compensating phase calulation algorithm [J]. Appl. Opt., 1987, 26(13): 2504~2505

【4】J. Schmit, K. Creath. Extended averaging technique for derivation of error-compensating algorithms in phase shifting interferometry[J]. Appl. Opt., 1995, 34(19): 3610~3619

【5】J. Schwider, O. Falkenstorfer, H. Schreiber et al.. New compensating four-phase algorithmfor phase-shift interferometry[J]. Opt. Engng., 1993, 32(8): 1883~1885

【6】Luo Zhiyong, Chen Zhaohui, Gu Yingzi et al.. Five-bucket phase-shifting algorithm based on numerical simulation [J]. Acta Optica Sinica, 2006, 26(11): 1687~1690
罗志勇, 陈朝晖, 顾英姿 等. 基于数值模拟的高准确度五步相移算法研究[J]. 光学学报, 2006, 26(11): 1687~1690

【7】Y. Surrel. Phase stepping: a new self-calibrating algorithm [J]. Appl. Opt., 1993, 32(19): 3598~3600

【8】Y. Surrel. Design of algorithms for phase measurements by the use of phase stepping[J]. Appl. Opt., 1996, 35(1): 51~60

【9】Xu Jiancheng, Chen Jianping, Xu Qian et al.. Multiple-beam phase shifting algorithms based on least-squares iteration[J]. Acta Optica Sinica, 2009, 29(1): 224~228
徐建程, 陈建平, 许巧 等. 基于最小二乘迭代的多光束相移算法[J]. 光学学报, 2009, 29(1): 224~228

【10】K. G. Larkin. A self-calibrating phase-shifting algorithm based on the natural demodulation of two-dimensionalfringe patterns [J]. Opt. Express, 2001, 9(5): 236~253

【11】Z. Y. Wang, B. T. Han. Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms [J]. Opt. Lett., 2004, 29(14): 1671~1673

【12】Julio C. Estrada, Manuel Servin, Juan A. Quiroga. A self-tuning phase-shifting algorithm for interferometry [J]. Opt. Express, 2010, 18(3): 2632~2638

【13】Jose′A. Go′mez-Pedrero, Juan A. Quiroga. Measurement of surface topography by RGB Shadow-Moiré with direct phase demodulation [J]. Opt. & Lasers in Engng., 2006, 44(12): 1297~1310

【14】Hongwei Guo, Mingyi Chen. Least-squares algorithm for phase-stepping interferometry with an unknown relative step [J]. Appl. Opt., 2005, 44(23): 4854~4858

【15】Luo Zhiyong, Yang Lifeng, Chen Yunchang. Error evaluation of cosine dependent algoithms in precision interference measurement[J]. Acta Optica Sinica, 2005, 25(12): 1629~1633
罗志勇, 杨丽峰, 陈允昌. 精密干涉测量中余弦依赖算法的误差研究[J]. 光学学报, 2005, 25(12): 1629~1633

【16】Du Hubing, Zhao Hong, Li Bing et al.. Phase shifting shadow Moiré by iterative least squares fitting [J]. Acta Photonica Sinica, 2011, 40(17): 979~982
杜虎兵, 赵宏, 李兵. 相移阴影叠栅基于迭代LSM拟合[J]. 光子学报, 2011, 40(17): 979~982

【17】H. B. Du, H. Zhao, B. Li et al.. Algorithm for phase shifting shadow Moiré with an unknown relative step[J]. J. Opt., 2011, 13(3): 1~5

【18】Hubing Du, Hong Zhao, Bing Li et al.. Phase-shifting shadow Moiré based on iterative self-tuning algorithm [J]. Appl. Opt., 2011, 50(36): 6708~6712

引用该论文

Du Hubing,Zhao Hong,Li Bing,Zhao Jinlei,Cao Shixu. Compensating Algorithm for the Nonlinear Phase-Shift Error for Phase-Shifting Shadow Moiré Technique[J]. Acta Optica Sinica, 2012, 32(5): 0512006

杜虎兵,赵宏,李兵,赵金磊,曹士旭. 阴影叠栅相移非线性误差补偿算法研究[J]. 光学学报, 2012, 32(5): 0512006

被引情况

【1】杜虎兵,赵宏,李兵,赵金磊,曹士旭. 任意相移阴影叠栅相位解调技术的研究. 光学学报, 2012, 32(9): 912003--1

【2】苏志德,史振广,苏东奇,隋永新,杨怀江. 在随机和倾斜移相下光强归一化的迭代移相算法. 光学学报, 2013, 33(1): 112001--1

【3】艾永旭,周翔,杜虎兵,郭家玉,杨涛,赵磊. 点光源下的Talbot 效应在阴影叠栅中的应用. 光学学报, 2016, 36(4): 412003--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF