首页 > 论文 > 激光与光电子学进展 > 55卷 > 5期(pp:53101--1)

溶剂蒸发退火对银纳米线薄膜性能的增强

Enhancement of Properties of Silver Nanowire Films Through Solvent Evapor Annealing

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用旋涂技术制备了银纳米线(AgNW)薄膜,对该AgNW 薄膜进行了溶剂蒸发退火处理。研究了所制备的AgNW薄膜的方块电阻、光学透光率、微结构及表面形貌,分析了以退火处理的AgNW薄膜作为阳极的聚合物太阳能电池的电流-电压特性。结果表明,经过3 h的甲醇退火处理,薄膜方块电阻由退火前的45.3 Ω/□减小到28.7 Ω/□,最后达到饱和,薄膜的品质因数提高了72.7%,薄膜的性能得到了增强;随醇溶剂沸点的增加,AgNW薄膜方块电阻的降低程度变小。以退火处理的AgNW薄膜为阳极的聚合物太阳电池的光电转换效率由退火前的0.94%增大到1.60%。退火3 h可获得性能较好的AgNW薄膜。

Abstract

Silver nanowire (AgNW) films are prepared by using the spin-coating technique and processed by solvent vapor annealing. The sheet resistance, transmissivity, microstructures and surface morphologies of AgNW films are investigated. The current-voltage characteristics of the polymer solar cells with these annealed AgNW films as the anodes are analyzed. The results show that, after 3 h of methanol annealing treatment, the sheet resistance of these films decreases from 45.3 Ω/□ before annealing to 28.7 Ω/□, and finally saturates. The quality factor increases by 72.7% and the properties of films are improved. With the increase of the boiling point of the alcoholic solvent, the decrease of the sheet resistance of AgNW films becomes slow. The photoelectric conversion efficiency of polymer solar cells with these annealed AgNW films as anodes increases from 0.94% before annealing to 1.60%. The AgNW films with superior properties can be obtained after 3 h of annealing treatment.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O484.4

DOI:10.3788/lop55.053101

所属栏目:薄膜

基金项目:国家自然科学基金(61377065,61574064)、广东省科技计划项目(2014B090915004,2015B010132009)

收稿日期:2017-10-27

修改稿日期:2017-11-12

网络出版日期:--

作者单位    点击查看

万慧军:井冈山大学数理学院, 江西 吉安 343009华南师范大学光电子材料与技术研究所, 广东 广州 510631
魏优:华南师范大学光电子材料与技术研究所, 广东 广州 510631
钟远聪:华南师范大学光电子材料与技术研究所, 广东 广州 510631
章勇:华南师范大学光电子材料与技术研究所, 广东 广州 510631

联系人作者:章勇(zycq@scnu.edu.cn)

备注:万慧军(1972—),女,硕士,教授,主要从事透明导电薄膜方面的研究。E-mail: wanhj0820@163.com

【1】Ellmer K. Past achievements and future challenges in the development of optically transparent electrodes[J]. Nature Photonics, 2012, 6(12): 809-817.

【2】Ouyang J, Yang Y. Conducting polymer as transparent electric glue[J]. Advanced Materials, 2006, 18(16): 2141-2144.

【3】Na S I, Kim S S, Jo J, et al. Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes[J]. Advanced Materials, 2008, 20(21): 4061-4067.

【4】Wu Z C, Chen Z H, Du X, et al. Transparent, conductive carbon nanotube films[J]. Science, 2004, 305(5688): 1273-1276.

【5】Niu C. Carbon nanotube transparent conducting films[J]. MRS Bulletin, 2011, 36(10): 766-773.

【6】Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706-710.

【7】Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology, 2010, 5(8): 574-578.

【8】Wang J X, Hong R J, Tao C X, et al. Fabrication and surface enhanced Raman spectroscopy of nano-Cu2O thin films[J]. Acta Optica Sinica, 2017, 37(8): 0816004.
王进霞, 洪瑞金, 陶春先, 等. 纳米Cu2O薄膜的制备及其表面增强拉曼光谱[J]. 光学学报, 2017, 37(8): 0816004.

【9】Zhu X L, Xiao J, Ma Z. Wide spectrum optical properties for HfO2 films[J]. Laser & Optoelectronics Progress, 2016, 53(3): 033101.
朱晓龙, 肖峻, 马孜. 氧化铪薄膜的宽光谱光学特性研究[J]. 激光与光电子学进展, 2016, 53(3): 033101.

【10】Zhang S B, Zuo D W, Lu W Z, et al. Optical and electrical properties of vanadium pentoxide films deposited on different substrates[J]. Acta Optica Sinica, 2016, 36(4): 0431001.
张圣斌, 左敦稳, 卢文壮, 等. 基于不同衬底的五氧化二钒薄膜光电特性[J]. 光学学报, 2016, 36(4): 0431001.

【11】Gaynor W, Lee J Y, Peumans P. Fully solution-processed inverted polymer solar cells with laminated nanowire electrodes[J]. ACS Nano, 2010, 4(1): 30-34.

【12】Chen C C, Dou L T, Zhu R, et al. Visibly transparent polymer solar cells produced by solution processing[J]. ACS Nano, 2012, 6(8): 7185-7190.

【13】Leem D S, Edwards A, Faist M, et al. Efficient organic solar cells with solution-processed silver nanowire electrodes[J]. Advanced Materials, 2011, 23(38): 4371-4375.

【14】Jin Y, Deng D, Cheng Y, et al. Annealing-free and strongly adhesive silver nanowire networks with long-term reliability by introduction of a nonconductive and biocompatible polymer binder[J]. Nanoscale, 2014, 6(9): 4812-4818.

【15】Gaynor W, Burkhard G F, McGehee M D, et al. Smooth nanowire/polymer composite transparent electrodes[J]. Advanced Materials, 2011, 23(26): 2905-2910.

【16】Ye S R, Rathmell A R, Chen Z F, et al. Metal nanowire networks: The next generation of transparent conductors[J]. Advanced Materials, 2014, 26(39): 6670-6687.

【17】Sun Y, Gates B, Mayers B, et al. Silver nanowires by soft solution processing[J]. Nano Letters, 2002, 2(2): 165-168.

【18】Li X, Wang L, Yan G. Review: Recent research progress on preparation of silver nanowires by soft solution method and their applications[J]. Crystal Research and Technology, 2011, 46(5): 427-438.

【19】Lee J Y, Connor S T, Cui Y, et al. Solution-processed metal nanowire mesh transparent electrodes[J]. Nano Letters, 2008, 8(2): 689-692.

【20】Mutiso R M, Sherrott M C, Rathmell A R, et al. Integrating simulations and experiments to predict sheet resistance and optical transmittance in nanowire films for transparent conductors[J]. ACS Nano, 2013, 7(9): 7654-7663.

【21】Zhu R, Chung C H, Cha K C, et al. Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors[J]. ACS Nano, 2011, 5(12): 9877-9882.

【22】Kim A, Won Y, Woo K, et al. Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells[J]. ACS Nano, 2013, 7(2): 1081-1091.

【23】Garnett E C, Cai W S, Cha J J, et al. Self-limited plasmonic welding of silver nanowire junctions[J]. Nature Materials, 2012, 11(3): 241-249.

【24】Lee J, Lee P, Lee H B, et al. Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application[J]. Advanced Functional Materials, 2013, 23(34): 4171-4176.

【25】Song T B, Chen Y, Chung C H, et al. Nanoscale joule heating and electromigration enhanced ripening of silver nanowire contacts[J]. ACS Nano, 2014, 8(3): 2804-2811.

【26】Lee J, Lee I, Kim T S, et al. Efficient welding of silver nanowire networks without post-processing[J]. Small, 2013, 9(17): 2887-2894.

【27】Dickey K C, Anthony J E, Loo Y. Improving organic thin-film transistor performance through solvent-vapor annealing of solution-processable triethylsilylethynyl anthradithiophene[J]. Advanced Materials, 2006, 18(13): 1721-1726.

【28】Berggren M, Gustafsson G, Inganas O, et al. Thermal control of near-infrared and visible electroluminescence in alkyl-phenyl substituted polythiophenes[J]. Applied Physics Letters, 1994, 65(12): 1489-1491.

【29】Li G, Shrotriya V, Huang J S, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends[J]. Nature Materials, 2005, 4(11): 864-868.

【30】Miller S, Fanchini G, Lin Y Y, et al. Investigation of nanoscale morphological changes in organic photovoltaics during solvent vapor annealing[J]. Journal of Materials Chemistry, 2008, 18(3): 306-312.

【31】Hecht D S, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures[J]. Advanced Materials, 2011, 23(13): 1482-1513.

引用该论文

Wan Huijun,Wei You,Zhong Yuancong,Zhang Yong. Enhancement of Properties of Silver Nanowire Films Through Solvent Evapor Annealing[J]. Laser & Optoelectronics Progress, 2018, 55(5): 053101

万慧军,魏优,钟远聪,章勇. 溶剂蒸发退火对银纳米线薄膜性能的增强[J]. 激光与光电子学进展, 2018, 55(5): 053101

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF