首页 > 论文 > 激光与光电子学进展 > 55卷 > 11期(pp:111101--1)

非冗余孔径掩模技术在双星探测中的实验研究

Experimental Investigation of Non-Redundant Aperture Masking Technique in Binary-Star Detection

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用地基大的光学望远镜获得衍射极限成像是许多天文观测的重要目的,受大气扰动限制的分辨率可以通过在望远镜瞳面添加非冗余孔径掩模、采用闭合相位技术来突破。介绍了非冗余孔径掩模技术的发展、原理以及应用;建立了将此技术应用于双星探测的数学模型,并进行了计算机模拟及实验研究。研究结果表明,通过对非冗余孔径掩模获得的干涉图的处理,获得闭合相位,以此对双星模型进行拟合,能够获得双星的对比度与角间距。

Abstract

It is one of the main aims for the most astronomical observations to obtain the diffraction-limited images by the large ground-borne optical telescope. The limited resolution induced by the atmospheric fluctuation can be overcome by the addition of non-redundant aperture masks on the telescope pupils and the closure phase technique. The progress, principle and applications of non-redundant aperture masking technique are reviewed, and the mathematical model for the application of this technique into the binary-star detection is established. The computer simulation and the corresponding experimental investigation are conducted. The research results show that one can obtain the closure phase by processing the interferogram obtained from the non-redundant aperture masking and thus the binary-star contrast ratio and angular separation can be obtained by fitting algorithms.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436.1

DOI:10.3788/lop55.111101

所属栏目:成像系统

基金项目:国家自然科学基金(11473047,11190011)

收稿日期:2018-04-17

修改稿日期:2018-05-17

网络出版日期:2018-05-29

作者单位    点击查看

王彦强:中国科学院国家天文台南京天文光学技术研究所, 江苏 南京 210042中国科学院天文光学技术重点实验室, 江苏 南京 210042中国科学院大学, 北京 100049
吴桢:中国科学院国家天文台南京天文光学技术研究所, 江苏 南京 210042中国科学院天文光学技术重点实验室, 江苏 南京 210042

联系人作者:吴桢(zhenwu@niaot.ac.cn)

【1】Haniff C A, Mackay C D, Titterington D J, et al. The first images from optical aperture synthesis[J]. Nature, 1987, 328: 694-696.

【2】Buscher D F, Haniff C A, Baldwin J E, et al. Detection of a bright feature on the surface of Betelgeuse[J]. Monthly Notices of the Royal Astronomical Society, 1990, 245: 7-11.

【3】Wilson R W, Baldwin J E, Buscher D F, et al. High-resolution imaging of Betelgeuse and Mira[J]. Monthly Notices of the Royal Astronomical Society, 1992, 257(3): 369-376.

【4】Tuthill P G, Haniff C A, Baldwin J E. Long-term diameter variations in the long-period variable o Ceti[J]. Monthly Notices of the Royal Astronomical Society, 1995, 277(4): 1541-1546.

【5】Wilson R W, Dhillon V S, Haniff C A. The changing face of Betelgeuse[J]. Monthly Notices of the Royal Astronomical Society, 1997, 291(4): 819-826.

【6】Tuthill P G, Haniff C A, Baldwin J E. Surface imaging of long-period variable stars[J]. Monthly Notices of the Royal Astronomical Society, 2002, 306(2): 353-360.

【7】Tuthill P G, Monnier J D, Danchi W C, et al. Michelson interferometry with the keck I telescope[J]. Publications of the Astronomical Society of the Pacific, 2000, 112(770): 555-565.

【8】Monnier J D, Tuthill P G, Danchi W C, et al. The keck aperture-masking experiment: near-infrared sizes of dusty Wolf-Rayet stars[J]. The Astrophysical Journal, 2007, 655(2): 1033-1045.

【9】Woodruff H C, Tuthill P G, Monnier J D, et al. The keck aperture masking experiment: multiwavelength observations of six mira variables[J]. The Astrophysical Journal, 2008, 673(1): 418-433.

【10】Woodruff H C, Ireland M J, Tuthill P G, et al. The keck aperture masking experiment: spectro-interferometry of three Mira Variables from 1.1 to 3.8 μm [J]. Astrophysical Journal, 2009, 691(2): 1328-1336.

【11】Blasius T D, Monnier J D, Tuthill P G, et al. The keck aperture masking experiment: dust-enshrouded red giants[J]. Monthly Notices of the Royal Astronomical Society, 2012, 426(4): 2652-2667.

【12】Pravdo S H, Shaklan S B, Wiktorowicz S J, et al. Masses of astrometrically discovered and imaged binaries: G78-28AB and GJ 231.1BC[J]. The Astrophysical Journal, 2006, 649(1): 389-398.

【13】Tuthill P, Lloyd J, Ireland M, et al. Sparse-aperture adaptive optics [J].Proceedings of SPIE, 2006, 6272: 62723A.

【14】Lacour S, Tuthill P, Ireland M, et al. Sparse aperture masking on Paranal[J]. Messenger, 2011, 146: 18-23.

【15】Lacour S, Tuthill P, Amico P, et al. Sparse aperture masking at the VLT[J]. Astronomy & Astrophysics, 2011, 532: A72.

【16】Lloyd J P, Martinache F, Ireland M J, et al. Direct detection of the brown dwarf GJ 802B with adaptive optics masking interferometry[J]. The Astrophysical Journal, 2006, 650(2): L131-L134.

【17】Martinache F, Lloyd J P, Ireland M J, et al. Precision masses of the low-mass binary system GJ 623[J]. The Astrophysical Journal, 2007, 661(1): 496-501.

【18】Ireland M J, Kraus A, Martinache F, et al. Dynamical mass of GJ 802B: a brown dwarf in a triple system[J]. The Astrophysical Journal, 2008, 678(1): 463-471.

【19】Martinache F, Rojas-Ayala B, Ireland M J, et al. Visual orbit of the low-mass binary gj 164 ab[J]. The Astrophysical Journal, 2009, 695(2): 1183-1190.

【20】Kraus A L, Ireland M J, Martinache F, et al. Mapping the shores of the brown dwarf desert. I. upper scorpius[J]. The Astrophysical Journal, 2008, 679(1): 762-782.

【21】Kraus A L, Ireland M J, Martinache F, et al. Mapping the shores of the brown dwarf desert. ii. multiple star formation in taurus-auriga[J]. The Astrophysical Journal, 2011, 731(1): 8.

【22】Evans T M, Ireland M J, Kraus A L, et al. Mapping the shores of the brown dwarf desert. iii. young moving groups[J]. The Astrophysical Journal, 2011, 744(2): 120.

【23】Ireland M J, Kraus A L. The disk around CoKu tauri/4: circumbinary, not transitional[J]. The Astrophysical Journal, 2008, 678(1): L59-L62.

【24】Huélamo N, Lacour S, Tuthill P, et al. A companion candidate in the gap of the T Chamaeleontis transitional disk[J]. Astronomy & Astrophysics, 2011, 528: L7.

【25】Cheetham A, Huélamo N, Lacour S, et al. Near-IR imaging of T Cha: evidence for scattered-light disc structures at Solar system scales[J]. Monthly Notices of the Royal Astronomical Society, 2015, 450(1): L1-L5.

【26】Biller B, Lacour S, Juhász A, et al. A likely close-in low-mass stellar companion to the transitional disk star hd 142527[J]. The Astrophysical Journal, 2012, 753(2): L38.

【27】Kraus A L, Ireland M J. LkCa 15: a young exoplanet caught at formation[J]. Astrophysical Journal, 2012, 745(1): 5-16.

【28】Sallum S, Follette K B, Eisner J A, et al. Accreting protoplanets in the LkCa 15 transition disk[J]. Nature, 2015, 527(7578): 342-344.

【29】Sivaramakrishnan A, Tuthill P, Martinache F, et al. Planetary system, star formation, and black hole science with non-redundant masking on space telescopes[J]. arXiv, 2009: 0904.1360.

【30】Ford K E S, McKernan B, Sivaramakrishnan A, et al. Active galactic nucleus and quasar science with aperture masking interferometry on the James Webb Space Telescope[J]. The Astrophysical Journal, 2014, 783(2): 73-89.

【31】Xu M F, Ding J W, Hu P, et al. Affects of mutli-apertures mask on formation of statistically independent speckle image[J]. Chinese Journal of Lasers, 2017, 44(1): 0101005.
徐美芳, 丁俊文, 胡鹏, 等. 多孔掩模对统计独立散斑图像形成的影响分析[J]. 中国激光, 2017, 44(1): 0101005.

【32】Wang H T, Zhou B F. Optical synthesis aperture interference image technology[J]. Optics and Precision Engineering, 2002, 10(5): 434-442.
王海涛, 周必方. 光学综合孔径干涉成像技术[J]. 光学 精密工程, 2002, 10(5): 434-442.

【33】Chen X Y. Some key techniques of Fizeau-type optical aperture synthesis telescope[D]. Shanghai:Shanghai Astronomical Observatory, Chinese Academy of Sciences, 2007.
陈欣扬. Fizeau型天文光学综合孔径望远镜的若干关键技术研究[D]. 上海: 中国科学院上海天文台, 2007.

【34】Wu Q Y. Study on the sparse aperture optical systems[D]. Suzhou: Soochow University, 2006: 18-19.
吴泉英. 稀疏孔径光学系统成像研究[D]. 苏州: 苏州大学, 2006: 18-19.

【35】Qian L, Wu Q Y, Wu F, et al. Study on imaging of dual three sub-apertures design[J]. Acta Optica Sinica, 2005, 25(8): 1030-1035.
钱霖, 吴泉英, 吴峰, 等. 复合三子镜的成像研究[J]. 光学学报, 2005, 25(8): 1030-1035.

【36】Liang S T. Study on the imaging theory of the optical synthetic aperturing imaging systems[D]. Xi′an: Xi′an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2011.
梁士通. 合成孔径光学成像系统研究[D]. 西安:中国科学院西安光学精密机械研究所, 2011.

【37】Yi H W. Study on the key issues of the optical sparse-aperture imaging systems[D]. Xi′an: Xi′an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2007.
易红伟. 光学稀疏孔径成像系统关键问题研究[D]. 西安: 中国科学院西安光学精密机械研究所, 2007.

【38】Sun C S, Zhu Y T, Hu Z W, et al. Astronomy optical interferometric telescope array optimization based on modified UV sampling method[J]. Journal of Applied Optics, 2017, 38(4): 555-561.
孙长胜, 朱永田, 胡中文, 等. 基于改进空间频率域采样的天文光干涉望远镜阵列优化[J]. 应用光学, 2017, 38(4): 555-561.

【39】Liu J, Jiang H, Wang J, et al. Study on the torus sparse aperture[J]. Laser & Optoelectronics Progress, 2012, 49(11): 111101.
柳军, 姜慧, 王军, 等. 环面形稀疏孔径的研究[J]. 激光与光电子学进展, 2012, 49(11): 111101.

【40】Chen Q H, Wang Z L, Zhang W. Study on subaperture aberration of optical synthetic aperture imaging system[J]. Journal of Applied Optics, 2006, 27(2): 112-115.
陈旗海, 王治乐, 张伟. 光学合成孔径成像系统子孔径像差研究[J]. 应用光学, 2006, 27(2): 112-115.

【41】Ding C Z, Feng H J, Xu Z H, et al. Co-phasing error study of the sub-apertures′ for optical sparse aperture system[J]. Acta Photonica Sinica, 2009, 38(5): 1158-1162.
丁驰竹, 冯华君, 徐之海, 等. 光学稀疏孔径成像系统子孔径位相误差研究[J]. 光子学报, 2009, 38(5): 1158-1162.

【42】Hu M M, Chen B H, Jiang H, et al. Influence of alignment error of the three sub-mirrors sparse aperture two-mirror system on imaging quality[J]. Laser & Optoelectronics Progress, 2015, 52(1): 011101.
胡孟孟, 陈宝华, 姜慧, 等. 三子镜稀疏孔径双反系统子镜装调误差对成像质量的影响[J]. 激光与光电子学进展, 2015, 52(1): 011101.

【43】Zheng B, Lu P F, Chen Y H, et al. Co-phase error detection of segmented mirrors[J]. Acta Optica Sinica, 2017, 37(11): 1112002.
郑彬, 陆培芬, 陈永和, 等. 拼接式反射镜共相误差检测[J]. 光学学报, 2017, 37(11): 1112002.

【44】Fan J L, Wu Q Y, Li X W, et al. Selection of benchmark sub-mirror of sparse aperture based on phase diversity[J]. Acta Optica Sinica, 2016, 36(5): 0511001.
范君柳, 吴泉英, 李勋武, 等. 基于相位差法的稀疏孔径基准子镜的选择[J]. 光学学报, 2016, 36(5): 0511001.

【45】Li X W, Fan J L, Hu M M, et al. Study of filter-apodization phase diversity applied in sparse aperture[J]. Laser & Optoelectronics Progress, 2015, 52(9): 092201.
李勋武, 范君柳, 胡孟孟, 等. 应用于稀疏孔径的滤波切趾相位差异法的研究[J]. 激光与光电子学进展, 2015, 52(9): 092201.

【46】Zhu X, Wu F, Wu Q, et al. Image restoration for sparse aperture systems based on wavelet-Wiener algorithm[J]. Proceedings of SPIE, 2009, 7513: 75131B.

【47】Wu J, Wu Z. Imaging characteristic and image reconstruction of synthetic aperture optical system[J]. Journal of Applied Optics, 2010, 31(4): 567-573.
吴俊, 吴桢. 合成孔径光学系统的成像特性和图像复原[J]. 应用光学, 2010, 31(4): 567-573.

【48】Zhang X L. Study on the astronomical optical interferometry and optical aperture synthetic image reconstruction[D].Nanjing: Nanjing University of Technology, 2004
张仙玲. 天文光干涉与光学综合孔径图像重构技术研究[D]. 南京: 南京理工大学, 2004.

【49】Jiang Y C. Image restoration in optical sparse aperture systems[D].Harbin: Harbin Institute of Technology, 2011.
姜艳超. 稀疏孔径光学成像系统图像恢复算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

引用该论文

Wang Yanqiang,Wu Zhen. Experimental Investigation of Non-Redundant Aperture Masking Technique in Binary-Star Detection[J]. Laser & Optoelectronics Progress, 2018, 55(11): 111101

王彦强,吴桢. 非冗余孔径掩模技术在双星探测中的实验研究[J]. 激光与光电子学进展, 2018, 55(11): 111101

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF