人工晶体学报, 2020, 49 (10): 1794, 网络出版: 2021-01-09  

6H-SiC单晶的中子辐照损伤及其退火特性研究

Radiation Damage and Annealing Characteristics of Neutron-Irradiated 6H-SiC Single Crystals
作者单位
1 运城学院物理与电子工程系,运城 044000
2 天津大学理学院,天津 300072
摘要
用剂量为1.72×1019 n/cm2和1.67×1020 n/cm2的中子对掺氮6H-SiC单晶进行辐照,利用紫外-可见(UV-Vis)吸收光谱等方法研究了辐照引起的晶格损伤及随退火温度的回复过程。结果表明:中子辐照产生的大量缺陷使SiC的光吸收明显增加;光学带隙能随辐照剂量的增加而降低,这与禁带中引入的局域态缺陷能级有关。光吸收边出现强烈的连续吸收可能归因于辐照产生的不同类型缺陷簇或局部非晶区域的光散射。对两个剂量辐照的样品进行室温到1 600 ℃的等时退火,发现两个剂量辐照产生的晶格损伤所需的退火回复温度不同,但退火回复过程都呈现出以800 ℃为转折点的两个相同阶段。
Abstract
The lattice damage and annealing recovery of N-doped 6H-SiC under neutron irradiation with fluences of 1.72×1019 n/cm2 and 1.67×1020 n/cm2 was investigated by UV-Vis absorption spectroscopy. The results indicate that the significant increase of optical absorption and the decrease of band-gap energy in neutron-irradiated sample is assigned to localized energy level in the forbidden energy band induced by the accumulation of irradiated defects. A continuous strong absorption with many fine structures appeared near the band-edge after irradiation, the origin of which would be attributed to the presence of various different structures of defect clusters and localized amorphous zones. The irradiated samples with two fluences are isochronal annealed from room temperature to 1 600 ℃, the evolution of the absorption spectrum with the annealing temperature shows that the recovery temperature of the lattice damage for the irradiated sample with two fluences is different, but the annealing recovery process shows two same stages with 800 ℃ as the turning temperature.
参考文献

[1] 郝 跃,彭 军,杨银堂.碳化硅宽带隙半导体技术[M].北京:科学出版社,2000.

[2] Fenici P, Frias Rebelo A J, Jones R H, et al. Current status of SiC/SiC composites R&D[J]. Journal of Nuclear Materials, 1998, 258: 215-225.

[3] 王玉霞,何海平,汤洪高.宽带隙半导体材料SiC研究进展及其应用[J].硅酸盐学报,2002,30(3):372-381.

[4] Sorieul S, Costantini J M, Gosmain L, et al. Study of damage in ion-irradiated α-SiC by optical spectroscopy[J]. Journal of Physics: Condensed Matter, 2006, 18: 8493-8502.

[5] Héliou R, Brebner J L, Roorda S. Optical and structural properties of 6H-SiC implanted with silicon as a function of implantation dose and temperature[J]. Nuclear Instruments and Methods in Physics Research Section B, 2001, 175-177: 268-273.

[6] Wendler E, Bierschenk Th, Felgentrger F, et al. Damage formation and optical absorption in neutron irradiated SiC[J]. Nuclear Instruments and Methods in Physics Research Section B, 2012, 286: 97-101.

[7] Wendler E, Heft A, Zammit U, et al. Sub-gap optical properties of ion implanted SiC[J]. Nuclear Instruments and Methods in Physics Research Section B, 1996, 116: 398-403.

[8] Okada M, Atobe K, Nakagawa M, et al. Irradiation temperature dependence of production efficiency of defects induced in neutron-irradiated silicon carbides[J]. Nuclear Instruments and Methods in Physics Research Section B, 2000, 166-167: 399-403.

[9] Wellmann P J, Bushevoy S, Weingrtner R. Evaluation of n-type doping of 4H-SiC and n-/p-type doping of 6H-SiC using absorption measurements[J]. Materials Science and Engineering: B, 2001, 80: 352-356.

[10] Viswanathan E, Katharria Y S, Selvakumar S, et al. Investigations on the structural and optical properties of the swift heavy ion irradiated 6H-SiC[J]. Nuclear Instruments and Methods in Physics Research Section B, 2011, 269: 1103-1107.

[11] Yasuda K, Takeda M, Masuda H, et al. Changes of the band gap of SiC crystals by high energy electron irradiation and annealing[J]. Physica Status Solidi(a), 1982, 71(2): 549-553.

[12] Vali I P, Shetty P K, Mahesha M G, et al. Structural and optical studies of gamma irradiated N-doped 4H-SiC[J]. Nuclear Instruments and Methods in Physics Research Section B, 2019, 440: 101-106.

[13] Calcagno L, Grimaldi M G, Musumeci P. Defect annealing in ion implanted silicon carbide[J]. Journal of Materials Research, 1997, 12(7): 1727-1733.

[14] Ruttensperger B, Krtz G, Müller G, et al. Crystalline-amorphous contrast formation in thermally crystallized SiC[J]. Journal of Non-Crystalline Solids, 1991, 137-138: 635-638.

[15] 阮永丰,黄 丽,王鹏飞,等.中子辐照6H-SiC晶体的退火特性及缺陷观测[J].硅酸盐学报,2012,40(3):436-442.

[16] Snead L L, Zinkle S J, Hay J C, et al. Amorphization of SiC under ion and neutron irradiation[J]. Nuclear Instruments and Methods in Physics Research Section B, 1998, 141: 123-132.

[17] Wang P F, Huang L, Zhu W, et al. Raman scattering of neutron irradiated 6H-SiC[J]. Solid State Communications, 2012, 152(10): 887-890.

[18] 王鹏飞,阮永丰,侯贝贝,等.中子辐照半绝缘SiC单晶的光学性质[J].硅酸盐学报,2013,41(3):353-358.

[19] Yano T, Miyazaki H, Akiyoshi M, et al. X-ray diffractometry and high-resolution electron microscopy of neutron-irradiated SiC to a fluence of 1.9×1027 n/m2 [J]. Journal of Nuclear Materials, 1998, 253: 78-86.

[20] Son N T, Chen W M, Lindstrm J L, et al. Carbon-vacancy related defects in 4H- and 6H-SiC[J]. Materials Science and Engineering: B, 1999, 61-62: 202-206.

[21] Chen X D, Fung S, Ling C C, et al. Deep level transient spectroscopic study of neutron-irradiated n-type 6H-SiC[J]. Journal of Applied Physics, 2003, 94(5): 3004-3010.

[22] Musumeci P, Reitano R, Calcagno L. Relaxation and crystallization of amorphous silicon carbide probed by optical measurements[J]. Philosophical Magazine B, 1997, 76(3): 323-333.

[23] Kawakubo T, Okada M. Electrical and optical properties of neutron-irradiated GaP crystals[J]. Journal of Applied Physics, 1990, 67(6): 3111-3114.

黄丽, 阮永丰. 6H-SiC单晶的中子辐照损伤及其退火特性研究[J]. 人工晶体学报, 2020, 49(10): 1794. HUANG Li, RUAN Yongfeng. Radiation Damage and Annealing Characteristics of Neutron-Irradiated 6H-SiC Single Crystals[J]. Journal of Synthetic Crystals, 2020, 49(10): 1794.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!