红外, 2017, 38 (2): 1, 网络出版: 2017-03-29  

硫化锌薄膜的原子层沉积生长及表征

Growth and Characterization ofZnS Thin Films by Atomic Layer Deposition
孙常鸿 1,2,*张鹏 1,2,3张天宁 1,3,4陈鑫 1,4叶振华 1,2
作者单位
1 中国科学院上海技术物理研究所,上海 200083
2 中国科学院红外成像材料与器件重点实验室,上海 200083
3 中国科学院大学,北京 100039
4 中国科学院红外物理国家重点实验室,上海200083
摘要
为满足硫化锌(ZnS)薄膜在光学薄膜领域进一步应用的要求,基于原子层沉积(Atomic Layer Deposition, ALD)技术在130℃温度下以二乙基锌(DEZ)和硫化氢(H2S)为反应源,在砷化镓(GaAs)衬底表面沉积了ZnS薄膜。用扫描电子显微镜(Scanning Electron Microscope, SEM)分析了样品的表面形貌和膜界面特性,用X射线衍射仪(X-ray Diffraction, XRD)分析了薄膜的结构特性,并通过X射线光电子能谱(X-ray Photoelectron Spectroscopy, XPS)分析了薄膜的化学成分。研究了厚度对薄膜结构和形貌的影响。结果表明,得到的ZnS薄膜为多晶结构,薄膜的厚度随循环数线性增加,速率为1.45 ?/cycle。对在75℃温度下烘烤48 h后的薄膜进行了XPS分析,得出的Zn/S比为1.07:1,表明烘烤除去了薄膜中残存的H2S。以较短生长时间得到的较薄的薄膜具有更好的表面平整度和更致密的结构。
Abstract
To meet the further requirements of using ZnS thin films in the field of optical films, ZnS thin films were grown on GaAs substrates at 130 ℃ by using DEZn and H2S as reaction sources on the basis of Atomic Layer Deposition(ALD). The surface morphology and interfacial properties of the samples were analyzed by Scanning Electron Microscopy(SEM). The structural properties of the thin films were analyzed by X-ray Diffractometer(XRD)and the chemical compositions of the thin filmswere analyzed by X-ray Photoelectron Spectroscopy(XPS). The effects of thickness on the structure and morphology of the thin films were studied. The results showed that theZnS thin films obtained were polycrystalline. Their thickness increased linearly with the number of cycles at a rate of 1.45 ?/cycle. The XPS analysis of the thin films baked at 75 ℃ for 48 h gave the ratio of Zn/S 1.07:1, which indicated that the residual H2S in the films was removed after baking. The thinner films grown in less time had better surface flatness and denser structure.
参考文献

[1] Suntola T, Anston J. Method for Producing Compound Thin Films: U.S., 4058430 [P]. 1977.

[2] 刘雄英,黄光周,范 艺, 等.原子层沉积技术及应用发展概况 [J].真空科学与技术学报,2006, 26(z1): 146-153,158.

[3] Suntora T, Atomic Layer Epitaxy [J].Thin Solid Films, 1992, 216(1): 84-89.

[4] 申 灿, 刘雄英, 黄光周.原子层沉积技术及其在半导体中的应用 [J].真空,2006, 23(4): 1-6.

[5] Faschinger W, Juza P, Ferreira S, et al. Self-limiting Monolayer Epitaxy of Wide Gap II-VI Superlattices [J].Thin Solid Films, 1993, 225(1-2): 270-274.

[6] Tadokoro T,Ohta S, Ishiguro T, et al, Atomic Layer Epitaxy Growth of ZnS on(100)GaAs Using Molecular Beam Epitaxy [J].J. Cryst. Growth, 1995, 148(3): 223-231.

[7] Koukitu A, Miyazawa T, Ikeda H, et al, Atmospheric Pressure Atomic Layer Epitaxy of ZnS Using Zn and H2S [J].J. Cryst. Growth, 1992, 123(1-2): 95-100.

[8] Suntola T, Pakkala A, and Lindfors S, Method for Performing Growth of Compound Thin Films: U. S. , 4413022 [P].1983.

[9] Suntola T, Pakkala A, and Lindfors S, Apparatus for Performing Growth of Compound Thin Films: U. S., 4389973 [P]. 1983.

[10] Riihel D, Ritala M, Matero R, et al, Introducing Atomic Layer Epitaxy for the Deposition of Optical Thin Films [J].Thin Solid Films, 1996, 289(1-2): 250-255.

[11] Oikkonen M, Ellipsometric Studies on Zinc Sulfide Thin Films Grown by Atomic Layer Epitaxy [J].J. Appl. Phys., 1987, 62(4): 1385-1393.

[12] Ihanus J, Lankinen M, Kemell M, et al, Aging of Electroluminescent ZnS:Mn Thin Films Deposited by Atomic Layer Deposition Processes [J].J. Appl. Phys., 2005, 98(11): 113526 - 113526-8.

[13] Moghtaderi B, Shames I, and Doroodchi E. Combustion Prevention of Iron Powders by a Novel Coating Method [J].Chem. Eng. Technol., 2006, 29(1): 97-103.

[14] Stuyven G, Visschere P, Hikavyy A, et al, Atomic Layer Deposition of ZnS Thin Films Based on Diethyl Zinc and Hydrogen Sulfide [J]. J. Cryst. Growth, 2002, 234(4): 690-698.

[15] Kim Y S and Yun S J. Studies on PolycrystallineZnS Thin Films Grown by Atomic Layer Deposition for Electroluminescent Applications [J]. Appl. Surf. Sci., 2004, 229(1-4): 105-111.

[16] Bakke J, King J, Jung H, et al. Atomic Layer Deposition ofZnS via in Situ Production of H2S [J].Thin Solid Films, 2010, 518(19): 5400-5408.

[17] Sanders B andKitai A. Zinc Oxysulfide Thin Films Grown by Atomic Layer Deposition [J].Chem. Mater., 1992, 4(5): 1005-1011.

[18] Hunter A and Kitai A. A Novel Atmospheric Pressure Technique for the Deposition of ZnS by Atomic Layer Epitaxy Using Dimethylzinc [J].J. Cryst. Growth, 1988, 91(1-2): 111-118.

[19] Yamaga S and Yoshikawa A. Atomic Layer Epitaxy of ZnS by a New Gas Supplying System in Low-pressure Metalorganic Vapor Phase Epitaxy [J]. J. Cryst. Growth, 1992,117(1-4), 152-155.

[20] Hsu C. Epitaxial Growth of II-VI Compound Semiconductors by Atomic Layer Epitaxy [J].Thin Solid Films, 1998, 335(1-2): 284-291.

[21] Fujiwara H,Kiryu H, and Shimizu I. Carrier Transport Properties of Iodine-doped(ZnS)3(ZnSe)42 Ordered Alloys Grown by Atomic Layer Epitaxy [J].J. Appl. Phys., 1995, 77(8): 3927-3933.

[22] Tammenmaa M, Koskinen T, Hiltunen L, et al. Zinc Chalcogenide Thin Films by the Atomic Layer Epitaxy Technique Using Zinc Acetate as Source Material [J].Thin Solid Films, 1998, 124(2): 125-128.

[23] Lahtinen J, Lu A, Tuomi T, et al. Effect of Growth Temperature on the Electronic Energy Band and Crystal Structure of ZnS Thin Films Grown Using Atomic Layer Epitaxy [J].J. Appl. Phys., 1985, 58(5): 1851-1853.

[24] Oikkonen M, Tuomi T, and Luomajarvi M. Density of ZnS Thin Films Grown by Atomic Layer Epitaxy [J].J. Appl. Phys., 1988, 63(4): 1070-1074.

[25] Critchley B and Stevens P. Composition of RF-sputtered ZnS Films [J].J. Phys. D: Appl. Phys., 1978, 11(4): 491-498.

孙常鸿, 张鹏, 张天宁, 陈鑫, 叶振华. 硫化锌薄膜的原子层沉积生长及表征[J]. 红外, 2017, 38(2): 1. SUN Chang-hong, ZHANG Peng, ZHANG Tian-ning, CHEN Xin, YE Zhen-hua. Growth and Characterization ofZnS Thin Films by Atomic Layer Deposition[J]. INFRARED, 2017, 38(2): 1.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!