光学 精密工程, 2018, 26 (2): 344, 网络出版: 2018-03-21   

磁悬浮分子泵用Hartley涡流传感器

Hartley eddy current sensor used in maglev molecular pump
作者单位
1 北京航空航天大学 惯性技术重点实验室 新型惯性仪表与导航系统技术国防重点学科实验室,北京 100191
2 北京市高速磁悬浮电机技术及应用工程技术研究中心,北京 100191
3 北京信息科技大学 仪器科学与光电工程学院,北京 100192
摘要
工业领域的磁悬浮分子泵用位移传感器除了要具有良好的静态特性外,还应具有高动态响应特性,同时其体积大小还影响着磁悬浮分子泵的抽速、真空度和压缩比。针对高真空磁悬浮分子泵,提出了一种基于Hartley原理的电涡流位移传感器设计方法,将传感器对称探头接入同一振荡电路作为工作电感。对传感器的动态特性进行了分析,并提出了对其动态响应特性在不影响灵敏度和线性度等静态性能的情况下进行补偿的方法。实验结果表明,在-0.4~0.4 mm内,传感器的线性度为±1.17%,灵敏度为9.901 mV/μm,分辨率为0.25%,动态响应带宽达到了10.2 kHz,两径向四路位移信号测量集成电路板体积仅为π×42 cm2,大大减小了传感器体积,满足了磁悬浮分子泵面向更高抽速和更高真空度的发展需求。
Abstract
For the displacement sensor used in maglev molecular pump in the industrial field, in addition to good static characteristic and high dynamic characteristic requirements, its volume also affects the pumping speed, the vacuum and the compression ratio of the maglev molecular pump. Aiming at the high-vacuum maglev molecular pump, a design method of the eddy current displacement sensor (ECDS) based on the Hartley oscillator was proposed. The symmetrical probes were connected into the same oscillation circuit as working inductors. Then the dynamic characteristic of the ECDS was analyzed in detail. And a method to compensate the response bandwidth without affecting the sensitivity and the linearity was put forward. Experimental results indicated that in the measurement range of -0.4-0.4 mm, the linearity came to ±1.17% and the sensitivity achieved 9.901 mV/μm, the resolution was ±0.25% and the response bandwidth was 10.2 kHz. The volume of the integrated circuit board of the two radial four-way displacement signal was only π×42 cm2, which greatly reduced the sensor volume. It can satisfy the requirements of the maglev molecular pump for higher pumping speed and higher vacuum.
参考文献

[1] 韩邦成, 王凯, 郑世强, 等. 磁悬浮高速离心式鼓风机的喘振检测[J]. 光学 精密工程, 2017, 25(4): 910-918.

    HAN B CH, WANG K, ZHENG SH Q, et al.. Surge detection of magnetically suspended high-speed centrifugal blower[J]. Opt. Precision Eng., 2017, 25(4): 910-918. (in Chinese)

[2] 谢进进, 刘刚, 文通. 双框架磁悬浮控制力矩陀螺磁轴承负载力矩复合补偿的控制[J]. 光学 精密工程, 2015, 23(8): 2211-2219.

    XIE J J, LIU G, WEN T. Composite compensation for load torque of active magnetic bearing in DGMSCMG[J]. Opt. Precision Eng., 2015, 23(8): 2211-2219. (in Chinese)

[3] ZHENG SH Q, LI H T, HAN B CH, et al.. Power consumption reduction for magnetic bearing systems during torque output of control moment gyros[J]. IEEE Transactions on Power Electronics, 2017, 32(7): 5752-5759.

[4] ZHENG SH Q, HAN B CH, GUO L. Composite hierarchical antidisturbance control for magnetic bearing system subject to multiple external disturbances[J]. IEEE Transactions on Industrial Electronics, 2014, 61(12): 7004-7012.

[5] 崔培玲, 盖玉欢, 房建成, 等. 主被动磁悬浮转子的不平衡振动自适应控制[J]. 光学 精密工程, 2015, 23(1): 122-131.

    CUI P L, GE Y H, FANG J CH, et al.. Adaptive control for unbalance vibration of active-passive hybrid magnetically suspended rotor[J]. Opt. Precision Eng., 2015, 23(1): 122-131. (in Chinese)

[6] 韩邦成, 薛庆昊, 刘旭. 高速磁悬浮永磁电机多物理场分析及转子损耗优化[J]. 光学 精密工程, 2017, 25(3): 680-688.

    HAN B CH, XUE Q H, LIU X. Multi-physics analysis and rotor loss optimization of high-speed magnetic suspension PM machine[J]. Opt. Precision Eng., 2017, 25(3): 680-688. (in Chinese)

[7] ZHOU L, LI L CH. Modeling and identification of a solid-core active magnetic bearing including eddy currents[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(6): 2784-2792.

[8] MORIYA T, SUGAWARA E, MATSUI H. Observation and elimination of recoil particles from turbo molecular pumps[J]. IEEE Transactions on Semiconductor Manufacturing, 2015, 28(3): 253-259.

[9] KOBAYASHI H, MAEDA K, IZAWA M. Behavior of particles reflected by turbo molecular pump in plasma etching apparatus[J]. IEEE Transactions on Semiconductor Manufacturing, 2009, 22(4): 462-467.

[10] SUN J J, WANG CH E, LE Y. Designing and experimental verification of the axial hybrid magnetic bearing to stabilization of a magnetically suspended inertially stabilized platform[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(6): 2881-2891.

[11] FANG J CH, ZHENG SH Q, HAN B CH. AMB vibration control for structural resonance of double-gimbal control moment gyro with high-speed magnetically suspended rotor[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(1): 32-43.

[12] 周红海. 分子泵磁悬浮轴承结构及功率放大器设计[D]. 哈尔滨: 哈尔滨工业大学, 2006.

    ZHOU H H. Design of Magnetic Bearing Structure and Power Amplifier for Molecular Pump[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)

[13] CHATURVEDI V, NABAVI M R, VOGEL J, et al.. Demodulation techniques for self-oscillating eddy-current displacement sensor interfaces: A review[J]. IEEE Sensors Journal, 2017, 17(9): 2617-2624.

[14] NABAVI M R, NIHTIANOV S N. Design strategies for eddy-current displacement sensor systems: Review and recommendations[J]. IEEE Sensors Journal, 2012, 12(12): 3346-3355.

[15] 刘强, 房建成, 韩邦成. 磁悬浮飞轮锁紧保护效果的检测[J]. 光学 精密工程, 2015, 23(1): 157-164.

    LIU Q, FANG J CH, HAN B CH. Detection of locking protection effect for magnetic bearing flywheel[J]. Opt. Precision Eng., 2015, 23(1): 157-164. (in Chinese)

[16] VYROUBAL D. Eddy-current displacement transducer with extended linear range and automatic tuning[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(9): 3221-3231.

[17] NABAVI M R, PERTIJS M A P, NIHTIANOV S. An interface for eddy-current displacement sensors with 15-bit resolution and 20 MHz excitation[J]. IEEE Journal of Solid-State Circuits, 2013, 48(11): 2868-2881.

[18] DEVER T P, PALAZZOLO A B, THOMAS III E M, et al.. Evaluation and improvement of eddy current position sensors in magnetically suspended flywheel system[C]. 36th Intersociety Conversion Engineering Conference, NASA, 2001.

[19] LARSONNEUR R, BHLER P. New radial sensor for active magnetic bearings[C]. Proceedings of the Ninth International Symposium on Magnetic Bearings, Lexington, Kentucky, 2004.

[20] NABAVI M R, NIHTIANOV S. Eddy-current sensor interface for advanced industrial applications[J]. IEEE Transactions on Industrial Electronics, 2011, 58(9): 4414-4423.

[21] ZHENG SH Q, WANG Y G, REN H L. Simultaneous temperature compensation and synchronous error elimination for axial displacement sensors using an auxiliary probe[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3179-3186.

[22] 张倩. 磁悬浮飞轮用电涡流位移传感器特性分析与研究[D]. 北京: 北京航空航天大学仪器科学与光电工程学院, 2007.

    ZHANG Q. Characteristics Study on Eddy Current Displacement Sensor for Magnetically Suspended Flywheel[D]. Beijing: School of Instrument Science and Opto-Electronics Engineering Beijing University of Aeronautics and Astronautics, 2007. (in Chinese)

[23] 樊树江, 李璐, 吴峻, 等. 新型电涡流传感器的动态响应分析[J]. 传感器技术, 2004, 23(3): 21-24.

    FAN SH J, LI L, WU J, et al.. Analysis on dynamic response of new eddy current sensor[J]. Journal of Transducer Technology, 2004, 23(3): 21-24. (in Chinese)

[24] OBERLE M, REUTEMANN R, HERTLE R, et al.. A 10-mW two-channel fully integrated system-on-chip for eddy-current position sensing[J]. IEEE Journal of Solid-State circuits, 2002, 37(7): 916-925.

王坤, 张利胜, 陈少华, 韩邦成. 磁悬浮分子泵用Hartley涡流传感器[J]. 光学 精密工程, 2018, 26(2): 344. WANG Kun, ZHANG Li-sheng, CHEN Shao-hua, HAN Bang-cheng. Hartley eddy current sensor used in maglev molecular pump[J]. Optics and Precision Engineering, 2018, 26(2): 344.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!