红外与激光工程, 2019, 48 (7): 0718002, 网络出版: 2019-08-07   

基于高温黑体的傅里叶光谱测量系统响应度分段线性标定

Piecewise linear calibration of Fourier spectral measurement system responsivity based on the high temperature blackbody
作者单位
1 长春理工大学 理学院, 吉林 长春 130022
2 中国计量科学研究院热工所, 北京 100029
摘要
傅里叶红外光谱仪(FTIR)光谱响应度的标定工作是FTIR红外光谱精准测量的基础。基于中国计量科学研究院(NIM)的ThermoGage HT9500型高温基准黑体辐射源, 对NIM搭建的FTIR高温黑体红外辐射特性测量系统的光谱响应度, 通过分段线性标定法进行了标定实验。建立并描述了FTIR测量高温黑体红外辐射特性系统响应度函数标定模型, 并通过测量的黑体辐射源在1 273~1 973 K温区、1~14 μm宽频谱内的红外光谱, 对FTIR测量系统的光谱响应度进行了标定实验研究。结果表明: 分段线性标定FTIR红外光谱测量系统方法具有良好可靠性。1 373~1 873 K温区的测量光谱与基于黑体标定的计算光谱在1~14 μm频谱内平均偏差优于1%, 黑体光谱辐射亮度峰值波长上反演得到的黑体计算温度与实际温度偏差优于0.45%。
Abstract
The calibration of the spectral responsivity of Fourier transform infrared(FTIR) spectrometer is the basis for accurate spectrum measurement. The spectral responsivity of FTIR spectrometer measurement system with high temperature blackbody infrared radiation characteristics, established at National Institute of Metrology, China(NIM), was calibrated based on piecewise linear calibration via the ThermoGage HT9500 high temperature reference blackbody furnace from NIM. A calculation model of the spectral responsivity calibration of FTIR measurement system was established and described. The infrared spectrum of the blackbody radiation source was measured in the temperature range of 1 273-1 973 K in the wavelength range of 1-14 μm. The results indicate that the method of piecewise linear calibration is practicable. The measured infrared spectrum in the temperature range of 1 373-1 873 K in the wavelength range of 1-14 μm was compared with the calculation which showed the signal divergence was less than 1%. The calculated temperature obtained by inverse calculation in this temperature region was compared with the actual temperature which showed the temperature divergence was less than 0.45%.
参考文献

[1] Song Xuyao. Research on infrared radiation characteristics of high-emissivity coating [D]. Changchun: Changchun University of Science and Technology, 2015. (in Chinese)

[2] Yuan Liang, Zhan Chunlian, Li Yan, et al. Testing technology of spectral radiance of infrared target[J]. Infrared and Laser Engineering, 2015, 44(12): 3807-3811. (in Chinese)

[3] Zhao Anxin, Tang Xiaojun, Zhang Zhonghua, et al. Influence analysis of Rubberband′s piecewise quantity on baseline correction effect[J]. Infrared and Laser Engineering, 2015, 44(4): 1172-1177. (in Chinese)

[4] Liu Zhiming, Gao Minguang, Liu Wenqing, et al. Study on the method of FTIR spectrum non linear multiple point calibration[J]. Spectroscopy and Spectral Analysis, 2008, 28(9): 2077-2080. (in Chinese)

[5] Hanssen L, Mekhontsev S, Khromchenko V. Infrared spectral emissivity characterization facility at NIST[C]//SPIE, 2004, 5404: 1-12.

[6] Liu Peng, Wang Peigang, Hua Jianwen, et al. Spectral calibration and ILS measurement of fourier transform spectrometer[J]. Science Technology and Engineering, 2007, 7(17): 4408-4411. (in Chinese)

[7] Paine S. Processing and calibration of submillimeter fourier transform radiometer spectra from the RHUBC-II campaign[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(12): 5787-5798.

[8] Feng Mingchun, Xu Liang, Gao Minguang, et al. Study of radiometric calibration methods on FTIR spectrometer[J]. Infrared Technology, 2012, 34(6): 366-370. (in Chinese)

[9] Zhao Yunlong, Dong Wei, Huan Kewei, et al. The calibration of the spectral responsivity of the fiber optical spectrometer based on high temperature blackbody[J]. Acta Metrologica Sinica, 2015, 36(6A): 83-86. (in Chinese)

[10] Tank V, Lindermeir E, Dietl H. Calibration of a fourier transform spectrometer using three black body sources: proceeding of 8th international conference on fourier transform spectroscopy [C]//SPIE, 1991, 1575: 241-243.

[11] Yang Minzhu, Zou Yaopu, Zhang Lei, et al. Nonlinear effects of the Fourier transform spectrometer detector and its correction[J]. Infrared and Laser Engineering, 2017, 46(10): 1023001. (in Chinese)

[12] Wang Zongwei, Dai Jingmin, He Xiaowa, et al. The linearity analysis of ultrahigh temperature FTIR spectral emissivity measurement system[J]. Spectroscopy and Spectral Analysis, 2012, 32(2): 313-316. (in Chinese)

[13] Zhao Yunlong. Experimental study on spectral emissivity measurement of high temperature materials [D]. Changchun: Changchun University of Science and Technology, 2017. (in Chinese)

宋旭尧, 端木庆铎, 董伟, 李志彬, 卢小丰, 原遵东. 基于高温黑体的傅里叶光谱测量系统响应度分段线性标定[J]. 红外与激光工程, 2019, 48(7): 0718002. Song Xuyao, Duanmu Qingduo, Dong Wei, Li Zhibin, Lu Xiaofeng, Yuan Zundong. Piecewise linear calibration of Fourier spectral measurement system responsivity based on the high temperature blackbody[J]. Infrared and Laser Engineering, 2019, 48(7): 0718002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!