光谱学与光谱分析, 2014, 34 (2): 405, 网络出版: 2015-01-13   

非理想化学计量比氧化铀的拉曼和红外光谱

Raman and Infrared Spectra of Non-Stoichiometry Uranium Oxides
作者单位
中国工程物理研究院, 四川 绵阳621900
摘要
测量了七种非理想化学计量比的UO2+x(0<x<0.66)及UO2和U3O7等理想化学计量比氧化铀的拉曼和红外光谱, 并进行了对比分析, 其中U3O7和U3O8之间UO2+x的分子振动光谱为首次报道。 拉曼光谱结果显示, 随着UO2+x中x值的增加, UO2特征峰中的578和1 150 cm-1峰强度快速减弱, 当x=0.19时, 这两峰基本消失, 可视为准完美萤石晶体结构UO2的标志。 445 cm-1峰强度在减弱的同时变宽并偏移, 当x=0.32时, 该峰已偏移至459 cm-1处, 同时在~630 cm-1出现一弱肩峰, 这与四方相U3O7的特征峰一致。 当x≥0.39时, 459 cm-1峰发生分裂, 在235和754 cm-1处出现新峰并增强, 其特征逐渐与正交相的α-U3O8接近。 但直至x=0.60时, 与α-U3O8相比其333, 397, 483和805 cm-1峰仍不突出。 红外光谱结果显示, 随着UO2+x中x值的增加, UO2位于400~570 cm-1区间的强吸收特征谱带逐渐分裂为~421和~515 cm-1两峰并增强, 同时UO2在~700 cm-1的弱吸收峰逐渐消失, ~645 cm-1处的肩峰逐渐显现, 出现的这三个峰正是U3O7的特征红外吸收峰。 当x≥0.39时, 在744 cm-1出现一强吸收峰并增强, 该峰是α-U3O8的最强特征峰。 但即使x=0.60时, ~645 cm-1峰仍然存在, 同时~515 cm-1峰也未明显分裂成485和535 cm-1峰, 这表明UO2.60仍处于四方相和正交相的过渡阶段。 上述结果表明, 随着x值的增加, UO2+x的晶体结构发生变化, 每次变化均在拉曼和红外光谱中得到体现。 通过对比各特征峰相对强度和位置的变化情况, 可很好区分和表征不同的氧化铀。
Abstract
Both of Raman and infrared spectra of seven non-stoichiometry and threestoichiometry uranium oxides, including UO2, U3O7 and UO2+x(0<x<0.66), are presented and discussed. The spectra of UO2+x in the stoichiometry range, U3O7 to U3O8, were first obtained and reported. Three typical peaks were observed at 445, 578 and 1 150 cm-1 in the Raman spectrum of uranium dioxide. The intensities of the peaks at 578 and 1 151 cm-1 decrease quickly with increasing x value of UO2+x, and while x=0.19, the two peaks disappear. Such peaks can therefore be considered as a fin-gerprint of the quasi-perfect UO2 fluorite structure. The peak at 445 cm-1 tends to weaken, broaden and shift to higher wavenumber in more oxidised samples. When x=0.32, this peak is shifted to the 459 cm-1 and a weak peak at about 630 cm-1 appears. The two new peaks are typical of the tetragonal U3O7. While x≥0.39, the peak at 459 cm-1 further splits into separate components. Two peaks at 235 and 754 cm-1 appear for UO2.39 and are visible with increased intensity as the oxygen-uranium ratio is increased. And the Raman spectra of UO2+x are gradually close to U3O8 in the α-phase, which has an orthorhombic unit cell. But several strongest features of theα-U3O8 specturm at 333, 397, 483 and 805 cm-1 are still not outstanding even in UO2.60. The main feature of the UO2 infrared spectrum shows a very broad and strong adsorption band at 400~570 cm-1 and another feature is a weak adsorption peak at about 700 cm-1. The 400~570 cm-1 band undergoes a progressive splitting into two new peaks at ~421 and ~515 cm-1 through increasing incorporation of oxygen into UO2. The weak peak at about 700 cm-1 disappears and a new weak peak appears at about 645 cm-1. The three new peaks are the infrared absorption features of U3O7. An absorption peak at 744 cm-1 which is the strongest feature ofα-U3O8 infrared spectrum appears for UO2.39 and is visible with increased intensity in more oxidised samples. The peak at about 645 cm-1 still exists and 515 cm-1 peak has no further splitting into two new peaks at 485 and 535 cm-1 which also are the infrared absorption features of U3O8 in UO2.60. This indicates that UO2.60 is still in the transition period between tetragonal and orthorhombic phase of uranium oxide. A sequence of phase transitions occurs through increasing x value of UO2+x with different Raman and infrared features.It is easy to identify different uranium oxides by comparing of relative intensities and locations of their characteristic peaks.
参考文献

[1] Palacios M L, Taylor S T. Applied Spectroscopy, 2000, 54: 1372.

[2] Desgranges L, Baldinozzi G, Simon P, et al. Journal of Raman Spectroscopy, 2012, 43: 455.

[3] Allen G C, Holmes N R. Applied Spectroscopy, 1994, 48: 525.

[4] Zhu Yubao, Hansen W N, Ward J. Applied Spectroscopy, 1989, 43: 113.

[5] Allen G C, Crofts J A, Griffiths A J. Journal of Nuclear Materials, 1976, 62: 273.

[6] Manara D, Renker B. Journal of Nuclear Materials, 2003, 321: 233.

[7] He Heming, Shoesmith D W. Physical Chemistry Chemistry Physics, 2010, 12: 8108.

[8] He Heming, Qin Z, Shoesmith D W. Electrochimica Acta, 2010, 56: 53.

[9] Rousseau G, Desgranges L, Charlot F, et al. Journal of Nuclear Materials, 2006, 355: 10.

[10] Sarsfield M J, Taylor R J, Puxley C, et al. Journal of Nuclear Materials, 2012, 427: 333.

[11] Livneh T, Sterer E. Physical Review B, 2006, 73: 085118.

[12] Jégou C, Caraballo R, Peuget S, et al. Journal of Nuclear Materials, 2010, 405: 235.

[13] Senanayake S D, Rousseau R, Colegrave D et al. Journal of Nuclear Materials, 2005, 342: 179.

[14] Goel P, Choudhury N, Chaplot S L. Journal of Nuclear Materials, 2008, 377: 438.

[15] Desgranges L, Baldinozzi G, Siméone D, et al. Inorganic Chemistry, 2011, 50: 6146.

吕俊波, 李赣, 郭淑兰. 非理想化学计量比氧化铀的拉曼和红外光谱[J]. 光谱学与光谱分析, 2014, 34(2): 405. Lv Jun-bo, LI Gan, GUO Shu-lan. Raman and Infrared Spectra of Non-Stoichiometry Uranium Oxides[J]. Spectroscopy and Spectral Analysis, 2014, 34(2): 405.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!