红外与毫米波学报, 2014, 33 (3): 213, 网络出版: 2014-06-30  

InAs/InGaAs数字合金应变补偿量子阱激光器

InAs/InGaAs digital alloy strain-compensated quantum well lasers
作者单位
中国科学院上海微系统与信息技术研究所 信息功能材料国家重点实验室,上海200050
摘要
采用气态源分子束外延在InP衬底上生长InAs/InGaAs数字合金应变补偿量子阱激光器.有源区的多量子阱结构由压应变的InAs/In0.53Ga0.47As数字合金三角形势阱和张应变的In0.43Ga0.57As势垒构成.X射线衍射测试表明赝晶生长的量子阱结构具有很高的晶格质量.在100K、130mA连续波工作模式下,激光器的峰值波长达到1.94μm,对应的阈值电流密度为2.58kA/cm2.随着温度升高,激光器的激射光谱出现独特的蓝移现象,这是由于激光器结构中相对较高的内部吸收和弱的光学限制引起最大增益函数斜率降低所导致的.
Abstract
InAs/InGaAs digital alloy strain-compensated quantum well lasers have been grown on InP substrate by gas source molecular beam epitaxy. Multiple quantum wells composed of compressive InAs/In0.53Ga0.47As digital alloy triangular wells and tensile In0.43Ga0.57As barriers were used as the active region. X-ray diffraction measurements confirmed the pseudomorphic growth and high crystalline quality of the QW structures. The peak emission wavelength of the laser is 1.94μm at 100K under continuous-wave driving current of 130mA, and the threshold current density is 2.58kA/cm2. An unusual blue shift of the laser spectral with the increase of the temperature was found, which is originated from the reduced slope of maximum gain function, due to the relatively high internal absorption and weak optical confinement in the laser structure.
参考文献

[1] Mattiello M, Niklès M, Schilt S, et al. Novel Helmholtz-based photoacoustic sensor for trace gas detection at ppm level using GaInAsSb/GaAlAsSb DFB lasers[J]. Spectrochimica Acta Part A, 2006,63: 952958.

[2] Jean B, Bende T. Mid-IR laser applications in medicine[J]. Topics In Applied Physics, 2003,89: 511544.

[3] Kim J G, Shterengas L, Martinelli R U, et al. Room-temperature 2.5μm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves[J]. Applied Physics Letters, 2002,81(17): 31463148.

[4] Zhang Y G, Zheng Y L, Lin C, et al. Continuous wave performance and tenability of MBE grown 2.1μm InGaAsSb/AlGaAsSb MQW lasers[J]. Chinese Physics Letters, 2006,23(8): 22622265.

[5] O’Brien K, Sweeney S J, Adams A R, et al. Recombination processes in midinfrared InGaAsSb diode lasers emitting at 2.37μm[J]. Applied Physics Letters, 2006,89(5): 051104.

[6] Forouhar S, Ksebdzov A, Larsson A, et al. InGaAs/lnGaAsP/lnP Strained-layer quantum well lasers at 2μm[J]. Electronics Letters, 1992,28(15): 14311432.

[7] Mitsuhara M, Ogasawara M, Oishi M, et al. Metalorganic molecular-beam-epitaxy-grown In0.77Ga0.23As/InGaAs multiple quantum well lasers emitting at 2.07μm wavelength[J]. Applied Physics Letters, 1998,72(24): 31063108.

[8] Serries D, Peter M, Kiefer R, et al. Improved Performance of 2-μm GaInAs Strained Quantum-Well Lasers on InP by Increasing Carrier Confinement[J]. IEEE Photonics Technology Letters, 2001,13(5): 412414.

[9] Sato T, Mitsuhara M, Watanabe T, et al. Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1μm by metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 2005,87(21): 211903.

[10] Zheng L, Lin C H, Singer K E, et al. Strained GaInAs quantum well mid-IR emitters[J]. IEE Proc.- Optoelectron, 1997,144(5): 360364.

[11] Sato T, Mitsuhara M, Nunoya N, et al. 2.33-μm-Wavelength Distributed Feedback Lasers With InAs-In0.53Ga0.47As Multiple-Quantum Wells on InP Substrates[J]. IEEE Photonics Technology Letters, 2008,20(12): 10451047.

[12] Gu Y, Zhang Y G, Liu S, et al. Strain Compensated AlInGaAs/InGaAs/InAs Triangular Quantum Wells for Lasing Wavelength beyond 2μm[J]. Chinese Physics Letters, 2007,24 (11): 32373240.

[13] Mourad C, Gianardi D, Malloy K J, et al. 2μm GaInAsSb/AlGaAsSb midinfrared laser grown digitally on GaSb by modulated-molecular beam epitaxy[J]. Journal of Appiled Physics, 2000,88(10): 55435546.

[14] Gu Y, Zhang Y G, Wang K, et al. AlInGaAs/InGaAs/InAs strain compensated triangular quantum wells grown by gas source molecular beam epitaxy for laser applications in 2.12.4μm range[J]. Journal of Crystal Growth, 2009,311:19351938.

[15] Klopf F, Deubert S, Reithmaier J P, et al. Correlation between the gain profile and the temperature-induced shift in wavelength of quantum-dot lasers[J]. Applied Physics Letters, 2002,81(2): 217219.

[16] Ochiai M, Temkin H, Forouhar S, et al. InGaAs-InGaAsP Buried Heterostructure Lasers Operating at 2.0μm[J]. IEEE Photonics Technology Letters, 1995,7(8): 825827.

[17] Dong J, Ubukata A, Matsumoto K. Characteristics Dependence on Confinement Structure and Single-Mode Operation in 2-μm Compressively Strained InGaAs-InGaAsP Quantum-Well Lasers[J]. IEEE Photonics Technology Letters, 1998,10(4): 513515.

[18] Mitsuhara M, Ogasawara M, Oishi M, et al. 2.05-μm Wavelength InGaAs-InGaAs Distributed-Feedback Multiquantum-Well Lasers with 10-mW Output Power[J]. IEEE Photonics Technology Letters, 1999,11(1): 3335.

曹远迎, 顾溢, 张永刚, 李耀耀, 方祥, 李爱珍, 周立, 李好斯白音. InAs/InGaAs数字合金应变补偿量子阱激光器[J]. 红外与毫米波学报, 2014, 33(3): 213. CAO Yuan-Ying, GU Yi, ZHANG Yong-Gang, LI Yao-Yao, FANG Xiang, LI Ai-Zhen, ZHOU Li, LI Hao-Si-Bai-Yin. InAs/InGaAs digital alloy strain-compensated quantum well lasers[J]. Journal of Infrared and Millimeter Waves, 2014, 33(3): 213.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!