激光与光电子学进展, 2014, 51 (3): 031401, 网络出版: 2014-03-03  

Compton散射对相对论正负电子对等离子体横色散的影响

Influences of Compton Scattering on Transverse Dispersion of Relativistic Electron-Positronplasma
作者单位
郑州华信学院信息工程系, 河南 新郑 451100
摘要
应用多光子非线性Compton 散射模型和正负电子对等离子体横介电系数公式,对无磁化、无碰撞、各向同性极端相对论正负电子对等离子体横色散进行了解析研究和数值计算,给出了散射下的相对论性费米分布、线性色散表达式及横色散解析解和数值解曲线。结果表明,与散射前相比,解析解横色散曲线中的短波曲线变长,长波曲线变短,不连续区间向左和向上移动。这主要是由于散射使正负电子对等离子体频率增大、短波成分增大、长波成分减小的缘故。数值解横色散曲线将两个不连续的长短波解析曲线完全连接起来,成为一条光滑的色散曲线。这主要是由于散射使正负电子对等离子体中出现极端相对论几率大大增强、粒子耦合密度和温度增大,使高频色散成分增多、整体色散增强的缘故。
Abstract
By using the model of multi- photon nonlinear Compton scattering and the transverse dielectric constant formula of electron- positron plasma,the transverse dielectric in the un- magnetized, non- collision, isotropic and ultra- relativistic electron- positron plasma is studied by using the analytic and numerical computing methods. The relativistic Fermi′s distribution under the Compton scattering,the expression of linear dispersion, and the numerical analytic and numerical of the transverse dispersion are given. The results show that the curve length of the short wave in the analytic transverse dispersion is increased in comparison with that before scattering, the curve length of the long wave is decreased, and their positions move to left and upward. The key causesare that frequency of the electron-positron plasma is increased by the scattering, the short wave and long wave components are increased and decreased, respectively. The two discontinuous analytic curves areabsolutely connected by the numerical transverse dispersion curve, so that a smooth curve is formed. The key causes are that the ultra- relativistic probabilities resulting from Compton scattering in the electronpositron plasma are greatly increased, the coupling density and temperature are increased,the high frequency component is decreased,and the whole dispersion composition is increased.
参考文献

[1] A Plastino, A R Plastino, C Tsallis. Ehrenfest theorem and information theory [J]. Phys Lett A, 1993, 177(3):177-179.

[2] A Lavagno, G Kaniadakis, M Rego-Monteiro, et al.. Nonextensive thermo-statistical approach of the peculiar velocity function of galaxy clusters [J]. Astrophys Lett, 1998, 35(1): 449-451.

[3] K I Nishikawa, P Hardee, G Pichardson, et al.. Particle acceleration and magnetic field generation in electron-positron relativistic shocks [J]. Astrophys Journal, 2005, 62 (2): 927-937.

[4] S Iwamoto, F Takahapa. Relativistic outflow of electron- positron pair plasma from a Wien equilibrium state [J]. Astrophys Journal, 2002, 56 (5): 163-173.

[5] K Hirotani, M Kimura, S Iguchi, et al.. Pair plasma dominance in the parsec-scale relativistic jet of 3C 345 [J]. Astrophys Journal, 2000, 54(5): 100-106.

[6] M Gell- Mann, C Tsallis. Nonextensive Entropy- Inter Disciplinary Applications [M]. New York: Oxford University Press, 2004.

[7] 高勋, 郭凯敏, 宋晓伟, 等. 激光烧蚀铁靶的等离子体特性[J]. 中国激光, 2010, 37(3): 877-881.

    Guo Xun, Guo Kaimin, Song Xiaowei, et al.. Plasma characteristics of metal Fe ablated by pulsed laser [J]. Chinese J Lasers, 2010, 37(3): 877-881.

[8] 禹定臣, 郝晓飞, 郝东山. 康普顿散射对可调缺陷层等离子体光子晶体滤波特性的影响[J]. 中国激光, 2011, 38(10): 1006001.

    Yu Dingchen, Hao Xiaofei, Hao Dongshan. Influence of filter wave of plasma photonic crystals with tunable defect produced by Compron scattering [J]. Chinese J Lasers, 2011, 38(10): 1006001.

[9] 刘会霞, 杨胜军, 王霄, 等. 脉冲激光烧蚀凹腔的实验分析及数值模拟[J]. 中国激光, 2009, 36(1): 219-223.

    Liu Huixia, Yang Shengjun, Wang Xiao, et al.. Experiment study and numerical simulation of pulsed laser ablation crater [J]. Chinese J Lasers, 2009, 36(1): 219-223.

[10] 文桦, 郝晓飞, 郝东山. Compton 散射下等离子体初温对质子产生的影响[J]. 激光与光电子学进展,2012, 49(8): 081902.

    Wen Hua, Hao Xiaofei, Hao Dongshan. Influence of initial plasma temperature on proton generation under Compton scattering [J]. Laser & Optoelectronics Progress, 2012, 49(8): 081902.

[11] 姚汝贤, 郝晓飞, 郝东山. 康普顿散射对非磁化等离子体光子晶体禁带密度温度特性的影响[J]. 激光与光电子学进展, 2011, 48(11): 111601.

    Yao Ruxian, Hao Xiaofei, Hao Dongshan. Influence of Compton scattering to the density and temperature characteristics of band gap structure for un-magnetized plasma photonic crystals[J]. Laser & Optoelectronics Progress, 2011, 48(11): 111601.

[12] R G Greaves, C M Surko. An electron-positron beam-plasma experiment [J]. Phys Rev Lett, 1995, 75(21): 3846-3849.

[13] H Hasegawa, S Irie, S Usami, et al.. Perpendicular nonlinear waves in an electron- positron- ion plasma [J]. Phys Plasmas, 2002, 9(6): 2549-2552.

[14] H K Avetissian, A K Avetissian, G F Mkrchian, et al.. Electron- positron pair production in the field of superstrong oppositely directed laser beams [J]. Phys Rev E, 2002, 66(1): 016502.

[15] R Alkofer, M B Hecht, C D Roberts, et al.. Pair creation and an X-ray free electron laser [J]. Phys Rev A, 2001, 87(19): 193902.

[16] E W Laing, D A Diver. Relativistic Landau damping of longitudinal waves in isotropic pair plasmas [J]. Phys Plasma, 2006, 13(9): 092115.

[17] E W Laing, D A Diver. Damped Bernstein modes in a weakly relativistic pair plasma [J]. Phys Rev E, 2005, 72 (3): 036409.

[18] V M Bannur. 3Self- consistent quasi particle model results for ultrarelativistic electron- positron thermodynamic plasma [J]. Phys Rev E, 2006, 73(6): 067401.

[19] Liu Sanqiu, Chen Xiaochang. Dispersion relation of longitudinal oscillation in relativistic plasmas with- nonextensive distribution [J]. Physica A, 2011,390 (9): 1704-1712.

[20] Liu Sanqiu, Chen Xiaochang. Dispersion relation of transverse oscillation in relativistic plasmas with nonextensive distribution[J]. J Plasma Phys, 2011, 77(5): 653-662.

[21] 廖妍俐, 刘三秋, 汪浩. 极端相对论性正负电子对等离子体中横振荡的色散关系[J]. 强激光与粒子束, 2008, 20(5): 751-754.

    Liao Yanli, Liu Sanqiu, Wang Hao. Transverse dispersion law of electron- positron plasma in ultra- relativistic regime [J]. High Power Laser and Particle Beams, 2008, 20(5): 751-754.

[22] 李军. 相对论q-分布正负电子对等离子体横振荡[J]. 强激光与粒子束, 2013, 25(4): 1009-1012.

    Li Jun. Transverse oscillation in relativistic electron- positron plasma with q- distribution [J]. High Power Laser and Particle Beams, 2013, 25(4): 1009-1012.

[23] 孔青, 朱立俊, 王加祥, 等. 电子在超强激光场中的动力学特性[J]. 物理学报, 1999, 48(4): 650-660.

    Kong Qing, Zhu Lijun, Wang Jiaxiang, et al.. Electron dynamics in the extra- intense stationary laser field [J]. Acta Physics Sinica, 1999, 48(4): 650-660.

[24] 郝东山. Compton 散射对1 维3 元未磁化等离子体光子晶体禁带影响[J]. 激光技术, 2013, 37(4): 515-518.

    HaoDongshan. Effect of Compton scattering on prohibited band gaps for 1-D ternary un-magnetized plasma photonic crystals [J]. Laser Technology, 2013, 37(4): 515-518.

冯光辉, 郝东山. Compton散射对相对论正负电子对等离子体横色散的影响[J]. 激光与光电子学进展, 2014, 51(3): 031401. Feng Guanghui, Hao Dongshan. Influences of Compton Scattering on Transverse Dispersion of Relativistic Electron-Positronplasma[J]. Laser & Optoelectronics Progress, 2014, 51(3): 031401.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!