强激光与粒子束, 2015, 27 (6): 062009, 网络出版: 2015-06-17  

冷冻靶中硅冷却臂的温度场和力学分析

Temperature field and mechanical properties of cooling arm for cryogenic target
作者单位
1 上海交通大学 微纳电子学系,微米纳米加工技术国家级重点实验室, 上海 200240
2 江西省精密驱动与控制重点实验室,南昌工程学院 机械与电气工程学院, 南昌 330099
3 上海交通大学 机动学院,制冷与低温工程研究所, 上海 200240
摘要
冷冻靶是实现惯性约束聚变高能量增益的重要靶型.冷却臂是冷冻靶的重要部件之一,通过它将冷源与铝套筒相连接,用于获得靶丸内均匀氘氚冰层时所需的精确温度,同时冷却臂也用于均匀夹持铝套筒.首先测试分析了硅材料在深低温下的热传导系数,表明硅材料在该温区具有优异的热传导能力.研究了硅冷却臂结构参数对冷却臂温度场分布的影响.分析不同晶向硅冷却臂周向均匀夹持铝套筒的特性,提出基于(111)晶向硅片研制冷却臂.研究了冷却臂力臂夹持力和共振频率,并对硅冷却臂的热-结构耦合进行分析.最后设计具有16个夹持力臂的二级分叉结构的冷却臂.基于微电子机械系统技术研制了硅冷却臂样机,并测试了冷却臂的侧壁垂直度和力学特性.将研制的硅冷却臂与铝套筒进行装配,表明冷却臂中力臂的力学特性能够实现对套筒的夹持.
Abstract
The cryogenic target is an important target type to achieve high inertial confinement fusion energy gain.The cooling arm connected the cool source to the aluminum sleeve is an important part of the cryogenic target,which is used to obtain accurate temperature field for the deuterium-tritium ice pellet,and uniformly clamp the aluminum sleeve.First the thermal conductivity of silicon material was measured,and the experiment shows that the silicon material has excellent thermal conductivity under the cryogenic temperature.Then the influences of structural parameters of the silicon cooling arm on the temperature field were analyzed.The impacts of different crystal orientation silicon cooling arm were studied,and the (111)silicon was chosen to fabricate cooling arm for its unique circumferentially uniform clamping force.The analyses of the clamping force,resonance frequency and the thermal-structure coupling analysis of the cooling arm were given.After that,the structure design of the cooling arm with two-level branch structure and 16 clamping fingers was proposed.Then the process of the cooling arm was designed based on MEMS technology and the prototype of cooling arm was realized.The vertical sidewall and mechanical properties of the cooling arm were measured.Finally the assembly sample of cooling arm with an aluminum sleeve was given,which indicated that the cooling arm can be achieved on clamping the sleeve.
参考文献

[1] 张杰.浅谈惯性约束核聚变[J].物理,1999,3:142-152.(Zhang Jie.An overview of inertial confinement fusion.Physics,1999,3:142-152)

[2] Lindl J D.Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J].Phys Plasmas,1995,2:3933-4024

[3] Moses E I.Ignition on the National Ignition Facility:a path towards inertial fusion energy[J].Nuclear Fusion,2009,49:104022.

[4] Lindl J D,McCrory R L,Campbell E M.Progress towards ignition on the National Ignition Facility[J].Phys Plasmas,2013,20:070501.

[5] Glenzer S H,Collahan D A,Mackinnon A J,et al.Cryogenic thermonuclear fuel implosions on the National Ignition Facility[J].Phys Plasmas,2012,19:056318.

[6] Atherton J L.Targets for the National Ignition Campaign[J].Journal of Physics,2008:032063.

[7] Miles R,Hamilton J,Aeawford J.Microfabricated deep-etched structures for ICF and equation of-state targets[J].Fusion Science and Technology,2009,55(3):308-312.

[8] 罗跃川,张继成.硅基支撑系统的光刻工艺[J].强激光与粒子束,2012,24(11):2673-2676.(Luo Yuechuan,Zhang Jicheng.Photolithography process of Si support system.High Power Laser and Particle Beams,2012,24(11):2673-2676)

[9] 张勇,唐昶环,张继成,等.ICF冷冻靶中Si冷却臂结构的初步设计[J].原子能科学技术,2013,47(11):2152-2155.(Zhang Yong,Tang Changhuan,Zhang Jicheng,et al.Primary design of Si cooling arm structure in ICF cryogenic target.Atomic Energy Science and Technology,2013,47(11):2152-2155)

[10] 张继成,罗跃川,马志波,等.惯性约束聚变靶中硅支撑冷却臂的制备[J].强激光与粒子束,2013,25(12):3251-3254.(Zhang Jicheng,Luo Yuechuan,Ma Zhibo,et al.Fabrication of silicon microstructure for ICF target.High Power Laser and Particle Beams,2013,25(12):3251-3254)

[11] Kim J,Cho D I,Muller R S.Why is (111)silicon a better mechanical material for MEMS[J].Transducers,2001:662-665

[12] Pike W T,Karl W J,Kumar S,et al.Analysis of sidewall quality in through-wafer deep reactive-ion etching[J].Microelectron Eng,2004,73/74:340-345

[13] Ikehara T,Maeda R.Fabrication of an accurately vertical sidewall for optical switch applications using deep RIE and photoresist spray coating[J].Microsyst Technol,2005,12:98-103.

[14] Chung C K.Geometrical pattern effect on silicon deep etching by an inductively coupled plasma system[J].J Micromech Microeng,2004,14:656-662.

[15] Agarwal R,Samson S,Bhansali S.Fabrication of vertical mirrors using plasma etch and KOH:IPA polishing[J].J Micromech Microeng,2007,17:26-35.

[16] Junji O,Yukihiro T,Kazuo S.Improvement of high aspect ratio Si etching by optimized oxygen plasma irradiation inserted DRIE[J].J Micromech Microeng,2009,19:095022.

徐斌, 刘景全, 江水东, 黄永华, 杨斌, 陈翔, 杨春生. 冷冻靶中硅冷却臂的温度场和力学分析[J]. 强激光与粒子束, 2015, 27(6): 062009. Xu Bin, Liu Jingquan, Jiang Shuidong, Huang Yonghua, Yang Bin, Chen Xiang, Yang Chunsheng. Temperature field and mechanical properties of cooling arm for cryogenic target[J]. High Power Laser and Particle Beams, 2015, 27(6): 062009.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!