激光与光电子学进展, 2017, 54 (3): 030006, 网络出版: 2017-03-08   

硅量子点在光电器件中的应用研究进展 下载: 1465次

Research Progress in Application of Silicon Quantum Dots in Optoelectronic Devices
作者单位
浙江大学材料科学与工程学院硅材料国家重点实验室, 浙江 杭州 310027
摘要
硅量子点(Si QDs)的尺寸一般小于10 nm,由于量子限域效应和表面效应而表现出与体硅材料不同的电子和光学性质,因此硅量子点受到了研究者的关注。近年来,硅量子点因其新颖的光电性能已经被应用到光电器件领域,并取得了一系列的研究进展。概述了硅量子点的电子和光学性质,详细介绍了国内外有关硅量子点在发光器件、太阳电池和光探测器3个方面的研究进展,并针对不同类型的硅量子点光电器件的性能进行了分析,认为经过坚持不懈的研究,硅量子点能够在未来光电器件革新中扮演重要角色。
Abstract
Silicon quantum dots (Si QDs) are usually smaller than 10 nm. They have drawn much attention from researchers because of their novel electronic and optical properties caused by quantum confinement effect and surface effect, which are different from those of bulk silicon materials. In recent years, Si QDs have been applied in the field of optoelectronics because of their novel electronic and optical properties, and a series of research progress have been achieved. The electronic and optical properties of Si QDs are overviewed. The use of Si QDs in optoelectronic devices such as light-emitting diodes, solar cells and photodetectors is introduced in detail. The performance of different types of Si QDs in optoelectronic devices is analyzed as well. It is believed that if continuous efforts in the research on Si QDs are made, Si QDs will play a crucial role in the innovation of optoelectronic devices in the future.
参考文献

[1] 陈丽白, 郭震宁, 杨小儒. (nc-Si/SiO2)/SiO2多层量子点结构的激子能级[J]. 光学学报, 2009, 29(5): 1320-1323.

    Chen Libai, Guo Zhenning, Yang Xiaoru. Exciton energy levels of (nc-Si/SiO2)/SiO2 multi-layer quantum dots structure[J]. Acta Optica Sinica, 2009, 29(5): 1320-1323.

[2] Canham L T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers[J]. Applied Physics Letters, 1990, 57(10): 1046-1046.

[3] Cullis A G, Canham L T. Visible light emission due to quantum size effects in highly porous crystalline silicon[J]. Nature, 1991, 353(6342): 335-338.

[4] Sham T K, Jiang D T, Coulthard I, et al. Origin of luminescence from porous silicon deduced by synchrotron-light-induced optical luminescence[J]. Nature, 1993, 363(6427): 331-334.

[5] Takeoka S, Fujii M, Hayashi S. Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime[J]. Physical Review B, 2000, 62(24): 16820-16825.

[6] Fujii M, Mimura A, Hayashi S, et al. Photoluminescence from Si nanocrystals dispersed in phosphosilicate glass thin films: improvement of photoluminescence efficiency[J]. Applied Physics Letters, 1999, 75(2): 184-186.

[7] Zhang H J, Lin L Z, Jiang S J. Fabrication of nc-Si/SiO2 structure by thermal oxidation method and its luminescence characteristics[J]. Chinese Optics Letters, 2009, 7(4): 332-334.

[8] Kim T W, Cho C H, Kim B H, et al. Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3[J]. Applied Physics Letters, 2006, 88(12): 123102-1-3

[9] Kim B H, Davis R F, Park S J. Optical property of silicon quantum dots embedded in silicon nitride by thermal annealing[J]. Thin Solid Films, 2010, 518(6): 1744-1746.

[10] Cho K S, Park N M, Kim T Y, et al. High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer[J]. Applied Physics Letters, 2005, 86(7): 071909.

[11] 林 娟, 杨培志, 化麒麟. 多层SiNx/Si/SiNx薄膜的微结构及其发光性能[J]. 光学学报, 2013, 33(2): 0231003.

    Lin Juan, Yang Peizhi, Hua Qilin. Microstructure and luminous property of multilayer SiNx/Si/SiNx thin films[J]. Acta Optica Sinica, 2013, 33(2): 0231003.

[12] Song D, Cho E C, Conibeer G, et al. Fabrication and characterization of Si nanocrystals in SiC matrix produced by magnetron cosputtering[J]. Journal of Vacuum Science & Technology B, 2007, 25(4): 1327-1335.

[13] Song D, Cho E C, Cho Y H, et al. Evolution of Si (and SiC) nanocrystal precipitation in SiC matrix[J]. Thin Solid Films, 2008, 516(12): 3824-3830.

[14] Holmes J D, Ziegler K J, Doty R C, et al. Highly luminescent silicon nanocrystals with discrete optical transitions[J]. Journal of the American Chemical Society, 2001, 123(16): 3743-3748.

[15] Pettigrew K A, Liu Q, Power P P, et al. Solution synthesis of alkyl- and alkyl/alkoxy-capped silicon nanocrystals via oxidation of Mg2Si[J]. Chemistry of Materials, 2003, 15(21): 4005-4011.

[16] Mangolini L, Thimsen E, Kortshagen U. High-yield plasma synthesis of luminescent silicon nanocrystals[J]. Nano Letters, 2005, 5(4): 655-659.

[17] Niesar S, Pereira R N, Stegner A R, et al. Low-cost post-growth treatment of crystalline silicon nanoparticles improving surface and electronic properties[J]. Advanced Functional Materials, 2012, 22(6): 1190-1198.

[18] Buuren T V, Dinh L N, Chase L L, et al. Changes in the electronic properties of Si nanocrystals as a function of particle size[J]. Physical Review Letters, 1998, 80(17): 3803-3806.

[19] Heitmann J, Müller F, Zacharias M, et al. Silicon nanocrystals: size matters[J]. Advanced Materials, 2005, 17(7): 795-803.

[20] 姜礼华, 曾祥斌, 金韦利, 等. 硅量子点在太阳能电池中的应用[J]. 激光与光电子学进展, 2010, 47(8): 32-37.

    Jiang Lihua, Zeng Xianbin, Jin Weili, et al. Application of silicon quantum dots in solar cells[J]. Laser & Optoelectronics Progress, 2010, 47(8): 32-37.

[21] Liu X K, Zhang Y H, Yu T, et al. Optimum quantum yield of the light emission from 2 to 10 nm hydrosilylated silicon quantum dots[J]. Particle & Particle Systems Characterization, 2016, 33(1): 44-52.

[22] Mastronardi M L, Maier-Flaig F, Faulkner D, et al. Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals[J]. Nano Letters, 2011, 12(1): 337-342.

[23] Buuren T V, Dinh L N, Chase L L, et al. Changes in the electronic properties of Si nanocrystals as a function of particle size[J]. Physical Review Letters, 1998, 80(17): 3803-3806.

[24] Pi X D, Liptak R W, Campbell S A, et al. In-flight dry etching of plasma-synthesized silicon nanocrystals[J]. Applied Physics Letters, 2007, 91(8): 083112.

[25] Pi X D, Liptak R W, Nowak J D, et al. Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach[J]. Nanotechnology, 2008, 19(24): 245603.

[26] Dasog M, De los Reyes G B, Titova L V, et al. Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups[J]. ACS Nano, 2014, 8(9): 9636-9648.

[27] Ma Y S, Chen X B, Pi X D, et al. Theoretical study of chlorine for silicon nanocrystals[J]. The Journal of Physical Chemistry C, 2011, 115(26): 12822-12825.

[28] Ma Y S, Pi X D, Yang D R. Fluorine-passivated silicon nanocrystals: surface chemistry versus quantum confinement[J]. Journal of Physical Chemistry C, 2012, 116(9): 5401-5406.

[29] Wang R, Pi X D, Yang D R. First-principles study on the surface chemistry of 1.4 nm silicon nanocrystals: case of hydrosilylation[J]. Journal of Physical Chemistry C, 2012, 116(36): 19434-19443.

[30] Wang R, Pi X D, Yang D R. Surface modification of chlorine-passivated silicon nanocrystals[J]. Physical Chemistry Chemical Physics, 2013, 15(6): 1815-1820.

[31] Cheng K Y, Anthony R, Kortshagen U R, et al. Hybrid silicon nanocrystal-organic light-emitting devices for infrared electroluminescence[J]. Nano Letters, 2010, 10(4): 1154-1157.

[32] Puzzo D P, Henderson E J, Helander M G, et al. Visible colloidal nanocrystal silicon light-emitting diode[J]. Nano Letters, 2011, 11(4): 1585-1590.

[33] Cheng K Y, Anthony R, Kortshagen U R, et al. High-efficiency silicon nanocrystal light-emitting devices[J]. Nano Letters, 2011, 11(5): 1952-1956.

[34] Maier-Flaig F, Rinck J, Stephan M, et al. Multicolor silicon light-emitting diodes (SiLEDs)[J]. Nano Letters, 2013, 13(2): 475-480.

[35] Yao L, Yu T, Ba L, et al. Efficient silicon quantum dots light emitting diodes with an inverted device structure[J]. Journal of Materials Chemistry C, 2015, 4(4): 673-677.

[36] Anthony R J, Cheng K Y, Holman Z C, et al. An all-gas-phase approach for the fabrication of silicon nanocrystal light-emitting devices[J]. Nano letters, 2012, 12(6): 2822-2825.

[37] Ghosh B, Masuda Y, Wakayama Y, et al. Hybrid white light emitting diode based on silicon nanocrystals[J]. Advanced Functional Materials, 2014, 24(45): 7151-7160.

[38] Maier-Flaig F, Kübel C, Rinck J, et al. Looking inside a working SiLED[J]. Nano Letters, 2013, 13(8): 3539-3545.

[39] Mastronardi M L, Henderson E J, Puzzo D P, et al. Silicon nanocrystal oleds: Effect of organic capping group on performance[J]. Small, 2012, 8(23): 3647-3654.

[40] Tu C C, Tang L, Huang J, et al. Visible electroluminescence from hybrid colloidal silicon quantum dot-organic light-emitting diodes[J]. Applied Physics Letters, 2011, 98(21): 213102.

[41] Xin Y, Nishio K, Saitow K. White-blue electroluminescence from a Si quantum dot hybrid light-emitting diode[J]. Applied Physics Letters, 2015, 106(20): 201102.

[42] vrcˇek V, Slaoui A, Muller J C. Silicon nanocrystals as light converter for solar cells[J]. Thin Solid Films, 2004, (s451-452): 384-388.

[43] Stupca M, Alsalhi M, Al Saud T, et al. Enhancement of polycrystalline silicon solar cells using ultrathin films of silicon nanoparticle[J]. Applied Physics Letters, 2007, 91(6): 063107.

[44] Pi X D, Li Q, Li D, et al. Spin-coating silicon-quantum-dot ink to improve solar cell efficiency[J]. Solar Energy Materials & Solar Cells, 2011, 95(10): 2941-2945.

[45] Pi X, Zhang L, Yang D. Enhancing the efficiency of multicrystalline silicon solar cells by the inkjet printing of silicon-quantum-dot ink[J]. Journal of Physicsal Chemistry C, 2012, 116(40): 21240-21243.

[46] Yuan Z, Pucker G, Marconi A, et al. Silicon nanocrystals as a photoluminescence down shifter for solar cells[J]. Solar Energy Materials & Solar Cells, 2011, 95(4): 1224-1227.

[47] Sgrignuoli F, Ingenhoven P, Pucker G, et al. Purcell effect and luminescent downshifting in silicon nanocrystals coated back-contact solar cells[J]. Solar Energy Materials & Solar Cells, 2015, 132: 267-274.

[48] Liu C Y, Holman Z C, Kortshagen U R. Hybrid solar cells from P3HT and silicon nanocrystals[J]. Nano Letters, 2009, 9(1): 449-452.

[49] Liu C Y, Holman Z C, Kortshagen U R. Optimization of Si NC/P3HT hybrid solar cells[J]. Advanced Functional Materials, 2010, 20(13): 2157-2164.

[50] Ding Y, Gresback R, Liu Q, et al. Silicon nanocrystal conjugated polymer hybrid solar cells with improved performance[J]. Nano Energy, 2014, 9: 25-31.

[51] Ding Y, Sugaya M, Liu Q, et al. Oxygen passivation of silicon nanocrystals: influences on trap states, electron mobility, and hybrid solar cell performance[J]. Nano Energy, 2014, 10: 322-328.

[52] Ding Y, Gresback R, Yamada R. Hybrid silicon nanocrystal/poly(3-hexylthiophene-2, 5-diyl) solar cells from a chlorinated silicon precursor[J]. Japanese Journal of Applied Physics, 2013, 52(11S): 11NM04.

[53] Zhao S, Pi X D, Mercier C, et al. Silicon-nanocrystal-incorporated ternary hybrid solar cells[J]. Nano Energy, 2016, 26: 305-312.

[54] Tu C C, Tang L, Huang J, et al. Solution-processed photodetectors from colloidal silicon nano/micro particle composite[J]. Optics Express, 2010, 18 (21): 21622-21627.

[55] Lin T, Liu X, Zhou B, et al. A solution-processed UV-sensitive photodiode produced using a new silicon nanocrystal ink[J]. Advanced Functional Materials, 2014, 24(38): 6016-6022.

[56] Lu P, Mu W, Xu J, et al. Phosphorus doping in Si nanocrystals/SiO2 multilayers and light emission with wavelength compatible for optical telecommunication[J]. Scientific Reports, 2016, 6: 22888.

[57] Sun H C, Xu J, Liu Y, et al. Subband light emission from phosphorous-doped amorphous Si/SiO2 multilayers at room temperature[J]. Chinese Physics Letters, 2011, 28(6): 067802.

[58] Chen X B, Pi X D, Yang D R. Critical role of dopant location for P-doped Si nanocrystals[J]. Journal of Physical Chemistry C, 2011, 115(3): 661-666.

[59] Pi X D, Chen X B, Yang D R. First-principles study of 2.2 nm silicon nanocrystals doped with boron[J]. Journal of Physical Chemistry C, 2011, 115(20): 9838-9843.

[60] Pi X D, Ni Z Y, Yang D R, et al. Ab initio study on the effect of structural relaxation on the electronic and optical properties of P-doped Si nanocrystals[J]. Journal of Applied Physics, 2014, 116(19): 194304.

[61] Ni Z Y, Pi X D, Zhou S, et al. Size-dependent structures and optical absorption of boron-hyperdoped silicon nanocrystals[J]. Advanced Optical Materials, 2016, 4(5): 700-707.

[62] Norris D J, Efros A L, Erwin S C. Doped nanocrystals[J]. Science, 2008, 319(5871): 1176-1779.

[63] Chen T, Reich K V, Kramer N J, et al. Metal-insulator transition in films of doped semiconductor nanocrystals[J]. Nature Materials, 2016, 114(15): 299-303.

[64] Chen T, Skinner B, Xie W, et al. Carrier transport in films of alkyl-ligand-terminated silicon nanocrystals[J]. The Journal of Physical Chemistry C, 2014, 118(34): 19580-19588.

[65] Pi X D, Zalloum O H Y, Knights A P, et al. Electrical conduction of silicon oxide containing silicon quantum dots[J]. Journal of Physics Condensed Matter, 2006, 18(43): 9943-9950.

[66] Yu T, Wang F, Xu Y, et al. Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors[J]. Advanced Materials, 2016, 28(24): 4912-4919.

[67] Kovalev D, Diener J, Heckler H, et al. Optical absorption cross sections of Si nanocrystals[J]. Physics Review B, 2000, 61(7): 4485-4487.

[68] Sychugov I, Pevere F, Luo J W, et al Single-dot absorption spectroscopy and theory of silicon nanocrystals[J]. Physics Review B, 2016, 93(16): 161413.

[69] Hessel C M, Reid D, Panthani M G, et al. Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths[J]. Chemistry of Materials, 2012, 24(2): 393-401.

[70] Comedi D, Zalloum O H Y, Wojcik J, et al. Light emission from hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide composites based on PECVD-grown Si-rich Si oxide films[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 6(12): 1561-1569.

[71] Pavesi L, Dal N L, Mazzoleni C, et al. Optical gain in silicon nanocrystals[J]. Nature, 2000, 408(6811): 440-444.

[72] Ma K, Feng J Y, Zhang Z J. Improved photoluminescence of silicon nanocrystals in silicon nitride prepared by ammonia sputtering[J]. Nanotechnology, 2006, 17(18): 4650-4653.

[73] Jurbergs D, Rogojina E, Manolini L, et al. Silicon nanocrycrystals with ensemble quantum yields exceeding 60%[J]. Applied Physics Letters, 2006, 88(23): 233116.

[74] Gupta A, Swihart M T, Wiggers H. Luminescent colloidal dispersion of silicon quantum dots from microwave plasma synthesis: exploring the photoluminescence behavior across the visible spectrum[J]. Advanced Functional Materials, 2009, 19(5): 696-703.

[75] Mangolini L, Kortshagen U. Plasma-assisted synthesis of silicon nanocrystals inks[J]. Advanced Materials, 2007, 19(18): 2513-2519.

[76] Kelly J A, Veinot J G C. An investigation into near-UV hydrosilylation of freestanding silicon nanocrystals[J]. ACS Nano, 2010, 4(8): 4645-4656.

[77] Dasog M, Yang Z, Regli S, et al. Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals[J]. ACS Nano, 2013, 7(3): 2676-2685.

[78] Kulakci M, Serincan U, Turan R. Electroluminescence generated by a metal oxide semiconductor light emitting diode (MOS-LED) with Si nanocrystals embedded in SiO2 layers by ion implantation[J]. Semiconductor Science and Technology, 2006, 21(12): 1527-1532.

[79] Marconi A, Anopchenko A, Wang M, et al. High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling[J]. Applied Physics Letters, 2009, 94(22): 221110.

[80] Anopchenko A, Marconi A, Moser E, et al. Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers[J]. Journal of Applied Physics, 2009, 106(3): 033104.

[81] Anopchenko A, Marconi A, Wang M, et al. Graded-size Si quantum dot ensembles for efficient light-emitting diodes[J]. Applied Physics Letters, 2011, 99(18): 181108.

[82] Cho K S, Park N M, Kim T Y, et al. High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer[J]. Applied Physics Letters, 2005, 86(7): 071909.

[83] Chen L Y, Chen W H, Hong F C N. Visible electroluminescence from silicon nanocrystals embedded in amorphous silicon nitride matrix[J]. Applied Physics Letters, 2005, 86(19): 19350-19356.

[84] Sung G Y, Park N M, Shin J H, et al. Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6): 1545-1555.

[85] 徐 伟, 严敏逸, 许 杰, 等. 纳米硅量子点/氮化硅三明治结构的电致发光[J]. 中国激光, 2012, 39(7): 0706003.

    Xu Wei, Yan Minyi, Xu Jie, et al. Electroluminescence from amorphous SiN/Si quantum dots/amorphous SiN sandwiched structures[J]. Chinese J Lasers, 2012, 39(7): 0706003.

[86] Huh C, Choi C J, Kim W, et al. Enhancement in light emission efficiency of Si nanocrystal light-emitting diodes by a surface plasmon coupling[J]. Applied Physics Letters, 2012, 100(18): 181108.

[87] Rui Y, Li S, Xu J, et al. Size-dependent electroluminescence from Si quantum dots embedded in amorphous SiC matrix[J]. Journal of Applied Physics, 2011, 110(6): 064322.

[88] Rui Y, Li S, Cao Y, et al. Structural and electroluminescent properties of Si quantum dots/SiC multilayers[J]. Applied Surface Science, 2013, 269(11): 37-40.

[89] Xu X, Cao Y Q, Lu P, et al. Electroluminescence devices based on Si quantum dots/SiC multilayers embedded in PN junction[J]. IEEE Photonics Journal, 2014, 6(1): 2200207.

[90] Liu C Y, Kortshagen U R. A silicon nanocrystal Schottky junction solar cell produced from colloidal silicon nanocrystals[J]. Nanoscale Research Letters, 2010, 5(8): 1253-1256.

[91] Cho E C, Park S, Hao X, et al. Silicon quantum dot/crystalline silicon solar cells[J]. Nanotechnology, 2008, 19(24): 245201.

[92] Cho E C, Green M A, Conibeer G, et al. Silicon quantum dots in a dielectric matrix for all-silicon tandem solar cells[J]. Advances in Optoelectronics, 2007, 2007: 69578.

[93] Hao X J, Cho E C, Flynn C, et al. Synthesis and characterization of boron-doped Si quantum dots for all-Si quantum dot tandem solar cells[J]. Solar Energy Materials and Solar Cells, 2009, 93(2): 273-279.

[94] Perez-Wurfl I, Hao X, Gentle A, et al. Si nanocrystal p-i-n diodes fabricated on quartz substrates for third generation solar cell applications[J]. Applied Physics Letters, 2009, 95(15): 153506.

[95] Kim S K, Cho C H, Kim B H, et al. Electrical and optical characteristics of silicon nanocrystal solar cell[J]. Applied Physics Letters, 2009, 95(14): 143120.

[96] Song D, Cho E C, Conibeer G, et al. Structural, electrical and photovoltaic characterization of Si nanocrystals embedded SiC matrix and Si nanocrystals/c-Si heterojunction devices[J]. Solar Energy Materials and Solar Cells, 2008, 92(4): 474-481.

[97] Lper P, Canino M, Qazzazie D, et al. Silicon nanocrystals embedded in silicon carbide: investigation of charge carrier transport and recombination[J]. Applied Physics Letters, 2013, 102(3): 033507.

[98] Guha S, Yang J, Yan B. High efficiency multi-junction thin film silicon cells incorporating nanocrystalline silicon[J]. Solar Energy Materials & Solar Cells, 2013, 119(8): 1-11.

[99] Sai H, Saito K, Hozuki N, et al. Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells[J]. Applied Physics Letters, 2013, 102(5): 053509.

[100] Yue G, Yan B, Sivec L, et al. Effect of impurities on performance of hydrogenated nanocrystalline silicon solar cells[J]. Solar Energy Materials & Solar Cells, 2012, 104(9): 109-112.

[101] Sderstrm K, Bugnon G, Biron R, et al. Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light-scattering substrate[J]. Journal of Applied Physics, 2012, 112(11): 114503.

[102] Mai Y, Klein S, Carius R, et al. Open circuit voltage improvement of high-deposition-rate microcrystalline silicon solar cells by hot wire interface layers[J]. Applied Physics Letters, 2005, 87(7): 073503.

[103] Yan B, Yue G, Sivec L, et al. Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell[J]. Applied Physics Letters, 2011, 99(11): 113512.

[104] vrcˇek V, Mariotti D, Shibata Y, et al. A hybrid heterojunction based on fullerenes and surfactant-free, self-assembled, closely packed silicon nanocrystals[J]. Journal of Physics D: Applied Physics, 2010, 43(41): 415402.

[105] vrcˇek V, Cook S, Kazaoui S, et al. Silicon nanocrystals and semiconducting single-walled carbon nanotubes applied to photovoltaic cells[J]. Journal of Physical Chemistry Letters, 2011, 2(14): 1646-1650.

[106] Kim Y, Kim C H, Lee Y, et al. Enhanced performance of dye-sensitized TiO2 solar cells incorporating COOH-functionalized Si nanoparticles[J]. Chemistry of Materials, 2010, 22(1): 207-211.

[107] 王 蓉, 皮孝东, 杨德仁. 硅量子点敏化太阳电池研究[J]. 太阳能学报, 2013, 34(12): 2228-2231.

    Wang Rong, Pi Xiaodong, Yang Deren. Stduy on silicon quantum dots sensitized solar cells[J]. Acta Energiae Solaris Sinica, 2013, 34(12): 2228-2231.

[108] An X, Liu F, Jung Y J, et al. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection[J]. Nano Letters, 2013, 13(3): 909-916.

[109] Zhu M, Li X, Guo Y, et al. Vertical junction photodetectors based on reduced graphene oxide/silicon Schottky diodes[J]. Nanoscale, 2014, 6(9): 4909-4914.

[110] Lü P, Zhang X J, Zhang X W, et al. High-sensitivity and fast-response graphene/crystalline silicon Schottky junction-based near-IR photodetectors[J]. IEEE Electron Device Letters, 2013, 34(10): 1337-1339.

[111] Kim J, Joo S S, Lee K W, et al. Near-ultraviolet-sensitive graphene/porous silicon photodetectors[J]. Applied Materials Interfaces, 2014, 6(23): 20880-20886.

[112] Shin D H, Kim S, Kim J M, et al. Graphene/Si-quantum-dot heterojunction diodes showing high photosensitivity compatible with quantum confinement effect[J]. Advanced Materials, 2015, 27(16): 2614-2620.

[113] Wang L, Jie J, Shao Z, et al. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors[J]. Advanced Functional Materials, 2015, 25(19): 2910-2919.

谭华, 倪朕伊, 皮孝东, 杨德仁. 硅量子点在光电器件中的应用研究进展[J]. 激光与光电子学进展, 2017, 54(3): 030006. Tan Hua, Ni Zhenyi, Pi Xiaodong, Yang Deren. Research Progress in Application of Silicon Quantum Dots in Optoelectronic Devices[J]. Laser & Optoelectronics Progress, 2017, 54(3): 030006.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!