光学学报, 2013, 33 (8): 0816001, 网络出版: 2013-07-09   

温度对Er3+掺杂ZBLAN透明玻璃斯塔克能级跃迁的影响

Influence of Temperature on the Transition of Stark Sublevels of Er3+ Doped ZBLAN Glass
作者单位
1 天津理工大学材料物理研究所显示材料与光电器件教育部重点实验室, 天津 300384
2 天津理工大学理学院, 天津 300384
摘要
采用熔融淬火法制备了Er3+掺杂53ZrF4-20BaF2-4LaF3-3AlF3-20NaF-2.4PbF2(ZBLAN)氟化物透明玻璃。在10 K~540 K温度范围内,测量了对应于Er3+斯塔克分裂能级4S3/2(1)→4I15/2和4S3/2(2)→4I15/2(对应波长分别为542 nm和548 nm)的变温荧光光谱,结果显示环境温度升高时,样品在两个发射位置的发光强度均快速衰减,但是衰减速率有所差异,结合位形坐标模型讨论认为,两斯塔克能级的激活能分别为ΔE1=0.078 eV和ΔE2=0.049 eV,其差异导致了二者热猝灭速率不同。分析了斯塔克分裂能级跃迁的荧光强度比(FIR)随温度的变化规律,结果显示在低温区域FIR随温度呈现线性增加,而高温区则趋于平缓。计算了样品的温度灵敏度随温度的变化,结果表明,在温度90 K时,灵敏度达到最大为0.0011 K-1。该材料对环境温度敏感性可应用于光学温度传感器。
Abstract
Er3+-doped 53ZrF4-20BaF2-4LaF3-3AlF3-20NaF-2.4PbF2 (ZBLAN) fluoride transparent glasses are prepared by the melt quenching method. The fluorescence spectra are measured for the transition of Er3+ Stark sublevels 4S3/2(1)→4I15/2 and 4S3/2(2)→4I15/2 (λ1=542 nm, λ2=548 nm) with in the temperature range of 10 K~540 K. The results show a rapid decrease in emission intensity and an obvious difference in decay rate with the temperature increase. According to the configurational coordinate, the mechanism is proposed to involve the difference of thermal quenching rate from the fitted activation energy (ΔE) of 0.078 eV and 0.049 eV for two sublevels of 4S3/2(1) and 4S3/2(2), respectively. The calculated fluorescence intensity ratio (FIR), which is corresponding to the transition of Er3+ stark sublevels 4S3/2(1)→4I15/2 and 4S3/2(2)→4I15/2, shows a linearly increase with temperature rise and then tends to flatten at high temperature region. The temperature sensitivity of sample is obtained for the maximum value of 0.0011 K-1 at the temperature of 90 K. The features in temperature sensitivity would be an application of optical temperature sensor.
参考文献

[1] 杨瀛海, 俞本立. 钕玻璃的温敏特性及光纤温度传感器[J]. 光学学报, 1990, 10(2): 178-182.

    Yang Yinghai, Yu Benli. The properties of Nd3+ doped glass temperature and optical fibre temperature sensor [J]. Acta Optica Sinica, 1990, 10(2): 178-182.

[2] 王玉田, 胡俏丽, 石军彦. 基于荧光机理的光纤温度测量仪[J]. 光学学报, 2010, 30(3): 655-659.

    Wang Yutian, Hu Qiaoli, Shi Junyan. Optical fiber thermometer based on fluorescence mechanism [J]. Acta Optica Sinica, 2010, 30(3): 655-659.

[3] T Liu, K Obermann, K Petermann, et al.. Effect of saturation caused by amplified spontaneous emission on semiconductor optical amplifier performance [J]. Electron Lett, 1997, 33(24): 2042-2043.

[4] Shen Yang, Wang Xing, He Hongcai, et al.. Effects of Sm3+ doping on the temperature-dependent fluorescence intensity ratio of Er3+, Sm3+-codoped yttria stabilized zirconia [J]. J Alloys Compd, 2012, 536(25): 161-165.

[5] 周丽, 梁大开, 曾捷, 等. 温度影响光纤光栅传感器性能蜕化机理及实验研究[J]. 中国激光, 2012, 39(4): 0405007.

    Zhou Li, Liang Dakai, Zeng Jie, et al.. Mechanism and experimental research on performance degeneratio of fiber bragg grating affected by temperature [J]. Chinese J Lasers, 2012, 39(4): 0405007.

[6] P Haro-Gonzlez, S León-Luis, S Gonzlez-Pérez, et al.. Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor [J]. Mater Res Bull, 2011, 46(7): 1051-1054.

[7] G Tripathi, V K Rai, S B Rai. Upconversion and temperature sensing behavior of Er3+ doped Bi2O3-Li2O-BaO-PbO tertiary glass [J]. Opt Mater, 2007, 30(2): 201-206.

[8] M Quintanilla, E Cantelar, F Cussó, et al.. Temperature sensing with up-converting submicron-sized LiNbO3Er3+/Yb3+ particles [J]. Appl Phys Express, 2011, 4(022601): 1-3.

[9] H Berthou, C Jrgensen. Optical-fiber temperature sensor based on upconversion-excited fluorescence [J]. Opt Lett, 1990, 15(19): 1100-1102.

[10] E Maurice, G Monnom, B Dussardier, et al.. Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers [J]. Opt Lett, 1994, 19(13): 990-992.

[11] G Maciel, L S Menezes, A Gomes, et al.. Temperature sensor based on frequency upconversion in Er3+-doped fluoroindate glass [J]. IEEE Phot Tech Lett, 1995, 7(12): 1474-1476.

[12] P D Santos, M D Araujo, A Gouveia-Neto, et al.. Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ co-doped chalcogenide glass [J]. Appl Phys Lett, 1998, 73(5): 578-580.

[13] S F León-Luis, U R Rodríguez-Mendoza, E Lalla, et al.. Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass [J]. Sens Actuators, B: Chem, 2011, 158(1): 208-213.

[14] V K Rai, S Rai. Temperature sensing behaviour of the stark sublevels [J]. Spectrochim Acta Part A: Mol Biomol Spectrosc, 2007, 68(5): 1406-1409.

[15] M Viatroski, R Carvalho, G Cruz. Spectral of the ZBLANEr3+ system at low temperature [J]. J Alloys Compd, 2004, 372(1): L13-L14.

[16] Chen Yonghu, Liu Bo, Shi Chaoshu, et al.. The temperature effect of Lu2SiO5Ce3+ luminescence [J]. Nucl Instrum Methods Phys Res, Sect A, 2005, 537(1-2): 31-35.

[17] F Auzel. Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions [J]. Phys Rev B, 1976, 13(7): 2809.

[18] M Weber. Multiphonon relaxation of rare-earth ions in yttrium orthoaluminate [J]. Phys Rev B, 1973, 8(1): 54.

[19] O Svelto. Principles of Lasers, Fifth Edition [M]. New York: Springer, 2009, 58.

[20] Z P Ca, H Y Xu. Point temperature sensor based on green upconversion emission in an ErZBLALiP microsphere [J]. Sens Actuators, A: Phys, 2003, 108(1): 187-192.

[21] Li Dongyu, Wang Yuxiao, Zhang Xueru, et al.. Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3 [J]. Opt Commun, 2012, 285(7): 1925-1928.

冯志军, 张晓松, 周永亮, 凌志, 李梦真, 孙健, 李岚. 温度对Er3+掺杂ZBLAN透明玻璃斯塔克能级跃迁的影响[J]. 光学学报, 2013, 33(8): 0816001. Feng Zhijun, Zhang Xiaosong, Zhou Yongliang, Ling Zhi, Li Mengzhen, Sun Jian, Li Lan. Influence of Temperature on the Transition of Stark Sublevels of Er3+ Doped ZBLAN Glass[J]. Acta Optica Sinica, 2013, 33(8): 0816001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!