中国激光, 2020, 47 (9): 0913001, 网络出版: 2020-09-16   

TiN纳米粒子增强CdSe/Al2O3异质结荧光的研究 下载: 842次

Enhanced Fluorescence of CdSe/Al2O3 Heterojunctions Enabled by TiN Nanoparticles
作者单位
1 贵州大学贵州省光电子技术及应用重点实验室, 贵州 贵阳 550025
2 贵州大学医学院, 贵州 贵阳 550025
摘要
利用TiN纳米粒子对CdSe量子点和多孔Al2O3薄膜构成的异质结的表面荧光增强效应进行了实验研究。采用电化学沉积的方法,将TiN纳米粒子沉积于多孔Al2O3薄膜表面,再将胶体CdSe量子点自组装于TiN/Al2O3薄膜的表面,进而制备了CdSe/TiN/Al2O3异质结。同时,利用扫描近场光学显微镜测量了CdSe/TiN/Al2O3异质结的表面增强荧光效应。结果表明,由于TiN具有良好的电子传输特性,提高了CdSe量子点和多孔Al2O3薄膜之间的光生电子转移效率,进而增强了多孔Al2O3薄膜界面的荧光。该研究结果可广泛应用于光伏、光显示、光传感及纳米生物成像等领域。
Abstract
The enhanced fluorescence effect of the heterojunction of CdSe quantum dots and a porous Al2O3 film was experimentally studied by using TiN nanoparticles (NPs). TiN NPs were deposited on the surface of porous Al2O3 film. Then, the CdSe QDs were self-assembled on the surface of TiN/Al2O3 film to prepare the CdSe/TiN/Al2O3 heterojunction. At the same time, the surface enhanced fluorescence effect was observed on the platform of a scanning near-field optical microscope. The results have showed that the interfacial fluorescence from the porous Al2O3 film was enhanced due to the increase of poto-generated carriers resulted in by TiN Nps from the CdSe QDs to the porous Al2O3 film. These results based on this paper could be widely applied for many fields of photovoltaic, lightshows, optical sensors devices and nano-biological imaging system.

1 引言

与传统的荧光方法相比,表面增强荧光(SEF)技术[1-2]具有较高的灵敏度和较低的检测限[3],是一种前沿荧光检测技术[4],在高精度生物传感器[5-6]、太阳能电池[7-8]和探测生物分子信息[9]等领域应用非常广泛。构建量子点异质结是增强异质结界面荧光的重要方法之一[10-13],是进一步扩大量子点异质结在光伏[14-16]、光催化[17-19]等领域应用的有效手段。该方法通过控制量子点的光生载流子在异质结中的输运特性,增加光生载流子的数量,减少非辐射重构,实现辐射体的表面荧光增强效应。

多孔Al2O3薄膜是一种重要的金属氧化物半导体材料[20-21],具有带隙可调、光吸收率高等优点,被广泛应用于催化[22]、光伏[23]、光传感器[24]等领域。尤其是它表面的氧空位和铝填位等缺陷[25-26]使其具有能够吸引带负电离子的特性,为制备量子点/氧化铝异质结提供了一种新的方法。但是原材料的表面缺陷[27]不仅抑制了异质结载流子输运,还提高了非辐射复合率,从而限制了它的应用。然而,在原材料表面增加一层电子导体是有效输运载流子和减少非辐射复合的重要方法[28]

TiN作为过渡金属氮化物,是一种重要的表面等离子体材料[29],能够与现行的纳米加工技术兼容[30]。由于TiN的电子结构是由离子键、共价键和金属键结合而成的,氮的p轨道能级低于费米能级,导致了类似于金、银和其他贵金属的自由电子的运动[30-31],使得TiN纳米粒子具有类似于金纳米粒子的性质,如可以作为转移电子的导体[32]。Naldoni等[33]发现,与Au相比,TiO2纳米线上的TiN纳米粒子在太阳能水分解中产生的光电流提高了25%,TiN与TiO2之间形成欧姆接触,增强了热电子在界面上的传输。相比于金和银不能通过选择性干法刻蚀技术进行纳米结构化,TiN能与纳米加工技术相兼容。此外,TiN具有高硬度、高化学稳定性和高耐腐蚀性等优点[34],而且高温性能更好,其熔点高达2950 ℃,远高于Au、Ag等贵金属。这些良好的性能使其广泛应用于燃料电池[35]、微电子[36]和电容器[37]等领域。

本文采用电化学沉积方法和胶体自组装方法分别将TiN纳米粒子和表面带有羧基的CdSe量子点组装到多孔Al2O3薄膜表面,制备CdSe/TiN/Al2O3异质结,利用TiN纳米粒子良好的电子传输特性,将CdSe量子点的能量转移到Al2O3界面,实现TiN/Al2O3异质结界面荧光增强。

2 实验

2.1 材料和仪器

乙醇和正己烷为分析纯级别的试剂,分别购自天津富宇精细化工有限公司和阿拉丁试剂有限公司。铝基多孔Al2O3薄膜(上海纳腾公司)为蜂窝状孔分布结构,其孔尺寸约为70 nm,孔深约为5 μm。 实验中样品采用超声波清洗仪(深圳市语盟超声波清洗机设备厂,YM-031S)清洗。电化学工作站(瑞士万通PGSTAT302N)用于在多孔氧化铝表面沉积TiN纳米粒子。扫描近场光学显微镜(以色列,NanonicsMV4000)用于测量异质结表面荧光,其激发光采用中心波长为360 nm的连续激光(长春新产业,UV-360)。异质结的吸收光谱采用紫外-可见吸收光谱仪(日立,UV-4000)的反射模式测量;本文中的溶剂无特殊说明均为去离子水。CdSe量子点由本课题组前期所提方法[38-39]制备,单个量子点的尺寸约为3.5 nm,为闪锌矿结构,其数密度约为3×1018 mL-1

2.2 TiN/Al2O3薄膜的制备

图1为制备TiN/Al2O3薄膜的流程示意图。采用电化学沉积的方法将TiN纳米粒子沉积于多孔Al2O3表面,其具体方法如下:1)取一片多孔Al2O3基底(2 cm×2 cm),平均分成四份,每份大小为1 cm×1 cm,然后将它们分别用去离子水和无水乙醇冲洗三次,去除表面灰尘,再在超声波清洗仪中清洗2 min,取出,氮气吹干,备用。2)取0.4 g纳米TiN加入到20 mL去离子水中,超声分散5 min使其均匀分散在溶液中形成悬浊液。3)以多孔Al2O3基片为阳极,铂柱电极为阴极,纳米TiN悬浊液为电解液,采用恒电流法,分别设置为3×10-5,4×10-5,5×10-5 A的电流沉积1000 s后制备了不同沉积电流的TiN/Al2O3薄膜,然后,取出它们,并用去离子水冲洗干净,洗掉未被沉积于多孔Al2O3薄膜表面的TiN后,氮气吹干,备测。

图 1. 制备TiN/Al2O3薄膜的流程示意图

Fig. 1. Schematic of TiN/Al2O3 film preparation

下载图片 查看所有图片

2.3 CdSe/TiN/Al2O3异质结的制备

图2为制备CdSe/TiN/Al2O3异质结的流程示意图。将CdSe量子点与正己烷按1∶10的体积比稀释成为胶体量子点自组装溶液。用双面胶将TiN/Al2O3薄膜粘在比色皿的内壁上,然后将稀释后的CdSe量子点溶液倒入其中,待完全浸过样品上表面后停止。随着正己烷的挥发,比色皿液面逐渐降低,在此过程中CdSe量子点由于静电吸引作用,自组装于TiN/Al2O3薄膜表面,待液面低于样品下边缘后,取出,放入真空干燥箱中,80 ℃下烘干制备了CdSe/TiN/Al2O3异质结,取出待测。

图 2. CdSe/TiN/Al2O3异质结的流程示意图

Fig. 2. Schematic of CdSe/TiN/Al2O3 heterojunctions preparation

下载图片 查看所有图片

2.4 表征

以KCl溶液作为电解质,利用电化学工作站的循环伏安法测量TiN/Al2O3薄膜电学特性。以多孔Al2O3为背景,利用吸收光谱仪分别测量TiN/Al2O3和CdSe/TiN/Al2O3异质结的紫外-可见吸收光谱;采用扫描近场光学显微镜原位测量多孔Al2O3薄膜、TiN/Al2O3薄膜,以及CdSe/TiN/Al2O3异质结的荧光光谱和表面形貌。将CdSe量子点溶液放入比色皿中,利用中心波长365 nm的

LED光源激发,以光纤光谱仪(海洋光学,QE6500)收集荧光,其积分时间设置为100 ms。

3 结果与讨论

0.1 mol/L的KCl溶液作为电解液,三个TiN/Al2O3薄膜样品的伏安特性曲线如图3(b)所示,所有样品都有两组氧化还原峰,它们均在-1 V处存在一个显著的还原峰,-0.85 V处存在一个显著的氧化峰,且随着纳米TiN含量的增加,峰电流增大,说明TiN/Al2O3薄膜的导电性变强。它们还有一对较弱的氧化还原峰,分别在-0.22、-0.18、-0.16 V处出现还原峰,-0.26、-0.22、-0.21 V处出现另一个氧化峰,说明随着纳米TiN含量的增加,其峰电位绝对值越小。

3.1 TiN纳米粒子电化学沉积及TiN/Al2O3薄膜表面特性

图3(a)为电化学工作站采用恒电流模式时,设置不同电流参数沉积TiN纳米粒子形成TiN/Al2O3薄膜的表面电势随时间变化曲线。从图中可以看出,随沉积时间的增加,TiN薄膜表面电势先增加,然后逐渐稳定。这是由于纳米TiN表面带负电荷,在正向电流的驱动下,会向TiN/Al2O3薄膜电极(阳极)表面移动,而多孔Al2O3薄膜表面的氧空位所导致的正电荷能够吸附带有负电荷的纳米TiN结合形成TiN纳米粒子。因此,沉积电流越大,多孔Al2O3表面的纳米TiN浓度就越大,结合在Al2O3上的TiN纳米粒子就越多。

图 3. TiN/Al2O3薄膜的电化学表征。(a)电化学沉积过程中,TiN/Al2O3薄膜的表面电势随时间变化曲线;(b) TiN/Al2O3薄膜的伏安特性曲线

Fig. 3. Electrochemical characterization of TiN/Al2O3 film electrodes. (a) Curves of the surface potential with deposition time on TiN/Al2O3 film electrodes; (b) volt-ampere curves of TiN/Al2O3 film electrodes

下载图片 查看所有图片

3.2 TiN/Al2O3薄膜和CdSe/TiN/Al2O3异质结的紫外—可见吸收特性

图4是以多孔 Al2O3薄膜为参比,50 μA沉积电流所沉积的TiN/Al2O3薄膜和由它自组装形成CdSe/TiN/Al2O3异质结的吸收光谱。对比两者的吸收光谱可知,它们的谱形类似,均在400 nm和580 nm附近处有吸收峰,但CdSe/TiN/Al2O3异质结略有蓝移,且其吸收更强,吸收峰更窄。分析认为,由于自组装于TiN/Al2O3薄膜表面的CdSe量子点薄膜很薄,导致TiN/Al2O3薄膜吸收比CdSe

图 4. 50 μA沉积电流的TiN薄膜和CdSe/TiN薄膜的吸收光谱

Fig. 4. Absorption spectra of TiN film and CdSe/TiN film at 50 μA depositing time

下载图片 查看所有图片

量子点向红外方向有较大的延长(CdSe量子点吸收截止,而TiN/Al2O3还具有很强的吸收),由于CdSe/TiN/Al2O3的异质结效应,TiN/Al2O3的光生载流子被它们之间的表面势垒所阻挡,在界面处快速回落,故在580 nm附近的吸收峰明显变窄,且有明显蓝移,而400 nm附近的吸收峰相同,吸收增强明显,是CdSe量子点的吸收导致的。

3.3 CdSe/TiN/Al2O3异质结的表面增强荧光效应

为对比CdSe/TiN/Al2O3异质结的荧光光谱(FL),图5(a)给出CdSe量子点溶液和多孔Al2O3薄膜的荧光光谱。多孔Al2O3薄膜和CdSe量子点溶液分别在433 nm和524 nm处有一个荧光辐射峰,且CdSe量子点溶液在700 nm附近有一个缺陷荧光辐射峰,是CdSe量子点表面缺陷所导致的。

图 5. 样品的荧光光谱表征。(a)多孔Al2O3和CdSe量子点溶液的荧光光谱;(b)不同沉积电流时,CdSe/TiN/Al2O3异质结的荧光光谱

Fig. 5. Fluorescence spectra characterization of the samples. (a) Fluorescence spectra of the porous Al2O3 film and CdSe quantum dot solution; (b) fluorescence spectra of CdSe/TiN/Al2O3 heterojunctions at different depositing currents

下载图片 查看所有图片

图5(b)为分别采用30,40,50 μA的沉积电流沉积纳米TiN的CdSe/TiN/Al2O3异质结的荧光光谱。从图5(b)可以明显看出,异质结出现两个明显荧光峰,分别位于458 nm和525 nm处,它们分别是TiN/Al2O3界面和CdSe/TiN界面辐射的荧光[1]。对比图5(a)中的多孔 Al2O3薄膜的荧光,TiN/Al2O3界面辐射荧光峰值明显红移,这是由于TiN的费米能级低于多孔Al2O3薄膜的费米能级,多孔Al2O3薄膜导带的电子向TiN/Al2O3界面转移,并在低于多孔Al2O3薄膜导带位置发生界面电子-空穴复合而辐射荧光。而CdSe/TiN界面的荧光也略呈现红移。对比不同沉积电流的CdSe/TiN/Al2O3异质结的荧光峰值强度,随着沉积电流的增加,其荧光峰值逐渐变弱。分析认为,沉积电流变大后,沉积于多孔Al2O3表面的TiN纳米粒子变多,TiN薄膜变厚,阻挡了光生载流子在CdSe量子点薄膜和多孔Al2O3薄膜之间的输运,使其在输运过程中更容易被消耗掉,导致异质结界面电子-空穴复合数量减少。

图6为纳米TiN增强CdSe/Al2O3异质结荧光的光生载流子转移过程示意图,增强的荧光主要发生在多异质结的界面,当360 nm激光同时泵浦CdSe量子点和多孔Al2O3表面时,异质结电子转移和TiN纳米粒子电导作用辅助电子转移的过程如下[11,40]:1)CdSe量子点和多孔Al2O3价带上的电子在激光激发下跃迁到各自的导带;2)CdSe量子点和多孔Al2O3导带上光生载流子一部分回落与各自价带的空穴复合辐射荧光;3)CdSe量子点和多孔Al2O3导带上光生载流子另一部分直接越过它的界面势垒转移到TiN纳米粒子表面等离子体(SP)带上;4)电子抽运过程使得光生载流子在TiN纳米粒子SP带上累积,并使其SP带的位置向上移动;5)TiN纳米粒子SP带上的光生载流子分别与多孔Al2O3界面和CdSe量子点界面的空穴复合而辐射界面增强荧光;6)CdSe量子点也可以吸收部分多孔Al2O3的缺陷荧光,增加异质结的二次吸收。由于CdSe/TiN/Al2O3异质结效应,多孔Al2O3薄膜和CdSe量子点导带的电子向TiN界面转移,并在低于各自导带位置发生界面电子-空穴复合而辐射出红移的界面增强荧光。在以上过程中TiN纳米粒子主要起连接CdSe量子点和多孔Al2O3的作用,将CdSe量子点的光生载流子转移到多孔Al2O3界面辐射增强荧光,提高了异质结界面的电子转移率,减少了非辐射重构,增强了TiN/Al2O3异质结界面的荧光。

图 6. CdSe/TiN/Al2O3异质结光生载流子输运示意图

Fig. 6. Diagram of optical generating carriers transfer CdSe/TiN/Al2O3 heterojunction

下载图片 查看所有图片

3.4 CdSe/TiN/Al2O3异质结表面光谱地形图分析

为证实以上界面能量转移过程,本文使用扫描近场光学显微平台原位地测量了CdSe/TiN/Al2O3异质结的原子力显微镜(AFM)表面形貌和光谱形貌图,其异质结表面形貌如图7所示。从图7(a)可以看到,整个测量区域较为平滑,具有点状结构的TiN纳米粒子均匀地分布于多孔Al2O3薄膜表面,这说明电化学沉积可以得到均匀的TiN薄膜。而图7(b)为在TiN/Al2O3薄膜表面自组装CdSe量子点后的表面形貌,可以明显看出,它们的表面形貌有了显著的变化,且表面有条状的CdSe量子点自组装结构出现,这是TiN/Al2O3薄膜表面的CdSe量子点团簇在干燥失去背景溶剂后出现的自组装结构。与图7(a)相比,图7(b)具有更加明显的条纹状结构,如图7(b)中标记区域所示。当将胶体CdSe量子点自组装到TiN纳米粒子修饰的多孔Al2O3表面后,其表面带负电离子的油酸羧基可通过静电吸附与纳米孔边缘的未结合位点结合,从而固定在多孔Al2O3薄膜的表面。在胶体CdSe量子点背景溶剂挥发的过程中,同一极性的正已烷溶剂中的CdSe量子点向固定结合位点处的CdSe量子点聚集,并逐渐地覆盖整个纳米孔,相邻的纳米孔连接在一起,聚集形成了条纹状纳米结构。

图 7. TiN/Al2O3薄膜和CdSe/TiN/Al2O3异质结的AFM表面形貌。(a) TiN/Al2O3薄膜的AFM形貌;(b) CdSe/TiN/Al2O3异质结的AFM表面形貌

Fig. 7. AFM morphology of TiN/Al2O3 film and CdSe/TiN/Al2O3 heterojunction. (a) AFM morphology of TiN/Al2O3 film; (b) AFM morphology of CdSe/TiN/Al2O3 heterojunction

下载图片 查看所有图片

为测量自组装纳米线状结构区域与非线状区域之间的光谱变化,在图7(b)的最高位置(最高区域)的附近测量了该区域的峰值光谱地形图和峰值中心波长的变化,如图8所示。

图 8. TiN/CdSe/Al2O3异质结的光谱形貌图。(a)(b) TiN/Al2O3界面的荧光峰分布及其强度;(c)(d) CdSe/TiN界面的荧光峰分布及其强度

Fig. 8. Optical spectral morphology of CdSe/TiN/Al2O3 heterojunction. (a)(b) Distribution of fluorescence peaks and its intensity from TiN/Al2O3 interface; (c)(d) distribution of fluorescence peaks and its intensity from CdSe/TiN interface

下载图片 查看所有图片

图8(a)和(b)分别为TiN/Al2O3薄膜界面的荧光峰值分布和荧光强度分布图。从图中可以看出,荧光峰值波长分布在453~458 nm之间,这说明纳米TiN是以纳米粒子的形式分布于多孔Al2O3薄膜表面,而且TiN纳米粒子较多的地点,界面荧光峰值波长红移较多。另外,从图8(a)中可以看出,CdSe量子点越多的区域能量转移率越高,异质结的增强荧光越强;在图8(c)和(d)中CdSe/TiN界面的荧光峰值分布比较均匀,只有很少部分区域峰值波长偏离较大,这是由于TiN纳米粒子在多孔Al2O3上的沉积过多导致的,TiN沉积的越多,CdSe量子点和多孔Al2O3之间的距离越大,CdSe量子点的光生载流子在转移过程中被损耗,电子转移率降低,导致异质结中氧化铝界面的辐射荧光减弱,该荧光以CdSe量子点界面的辐射为主,这也进一步证实了前面所分析的结论。

4 结论

本文采用电化学沉积法和胶体化学法制备了CdSe/TiN/Al2O3异质结,分别利用紫外-可见吸收光谱仪和扫描近场光学显微镜测量了CdSe/TiN/Al2O3异质结的吸收光谱和表面增强荧光效应。结果表明,CdSe量子点可以明显提高异质结的吸收效率,且CdSe量子点自组装结构越多的区域,能量转移效率越高,增强荧光越强;TiN纳米粒子的表面等离子体态作为CdSe量子点和多孔Al2O3的中间能级,将CdSe量子点的光生载流子转移到TiN/Al2O3薄膜界面与空穴复合向外辐射荧光,提高了异质结界面电子转移率,减少非辐射重构,增强了TiN/Al2O3薄膜界面的荧光,最大增强了2.5倍,且该荧光发生了明显的红移;随着TiN纳米粒子沉积厚度的增加,CdSe量子点和多孔Al2O3之间的距离增加,CdSe量子点的光生载流子在转移过程中更容易被损耗,导致异质结中多孔Al2O3界面的辐射荧光减弱,但该荧光峰值波长红移会更明显。这个荧光增强和能量转移的方法可广泛应用于控制光电控测、光显示和光传感等领域。

参考文献

[1] Bai Z C, Hao L C, Zhang Z P, et al. Enhanced photoluminescence of corrugated Al2O3 film assisted by colloidal CdSe quantum dots[J]. Nanotechnology, 2017, 28(20): 205206.

[2] Fort E, Grésillon S. Surface enhanced fluorescence[J]. Journal of Physics D Applied Physics, 2008, 41(1): 13001.

[3] Li J L, Gu M. Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells[J]. Biomaterials, 2010, 31(36): 9492-9498.

[4] Borisov S M, Wolfbeis O S. Optical biosensors[J]. Chemical Reviews, 2008, 108(2): 423-461.

[5] Rizzo R, Alvaro M, Danz N, et al. Bloch surface wave enhanced biosensor for the direct detection of Angiopoietin-2 tumor biomarker in human plasma[J]. Biomedical Optics Express, 2018, 9(2): 529.

[6] 张文学, 张晓荣, 秦成兵, 等. 连续激光诱导金纳米棒荧光增强效应[J]. 激光与光电子学进展, 2019, 56(20): 202410.

    Zhang W X, Zhang X R, Qin C B, et al. Continuous laser induced photoluminescence enhancement of Au nanorods[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202410.

[7] Yang J, Lee J, Lee J Y, et al. Photocurrent enhancement of CdSe quantum-dot sensitized solar cells incorporating single-walled carbon nanotubes[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(2): 1347-1350.

[8] Yang J, Park T, Lee J, et al. Performance enhancement of 3-mercaptopropionic acid-capped CdSe quantum-dot sensitized solar cells incorporating single-walled carbon nanotubes[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(3): 2710-2714.

[9] Gracie K, Moores M, Smith W E, et al. Preferential attachment of specific fluorescent dyes and dyelabeled DNA sequences in a surface enhanced Raman scattering multiplex[J]. Analytical Chemistry, 2016, 88(2): 1147-1153.

[10] Peng M, Bai Z C, Li X J, et al. Controlling wide-spectrum fluorescence on Au/ZnSe multi-heterojunction[J]. Applied Physics A, 2018, 124(7): 1-6.

[11] Bai Z C, Hao L C, Huang Z L, et al. Enhancement effect of defect fluorescence of ZnSe quantum dots on a heterojuction of ZnSe quantum dots and gold nanoparticles[J]. Methods and Applications in Fluorescence, 2017, 5(4): 045001.

[12] Cheng C, Mao M. Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated inAl2O3 using atomic layer deposition[J]. Journal of Applied Physics, 2016, 120(8): 083103.

[13] 张莹, 白忠臣, 黄兆岭, 等. 金纳米粒子与CdSe量子点间的距离对体系荧光的影响[J]. 激光与光电子学进展, 2018, 55(7): 072601.

    Zhang Y, Bai Z C, Huang Z L, et al. Influence of distance between CdSe quantum dot and gold nanoparticle on system fluorescence[J]. Laser & Optoelectronics Progress, 2018, 55(7): 072601.

[14] Dixit SK, BhatnagarC, KumariA, et al.Development and characterization of PCDTBT: CdSe QDs hybrid solar cell[C]∥AIP Publishing LLC, 2014.

[15] Dayneko S, Tameev A, Tedoradze M, et al. Hybrid bulk heterojunction solar cells based on low band gap polymers and CdSe nanocrystals[J]. Proceedings of SPIE, 2014, 8981: 898113.

[16] PatelM, SahuS, Verma AK, et al.Solution processed solar cells based onin situ synthesis of CdSe quantum dots[C]∥2017 International Conference on Energy. 1-2 Aug. 2017, Chennai, India.New York: IEEE Press, 2017: 1683- 1687.

[17] Laatar F, Moussa H, Alem H, et al. CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity[J]. Beilstein Journal of Nanotechnology, 2017, 8: 2741-2752.

[18] Chen W W, Yu S, Zhong Y Q, et al. Effect of electron transfer on the photocatalytic hydrogen evolution efficiency of faceted TiO2/CdSe QDs under visible light[J]. New Journal of Chemistry, 2018, 42(7): 4811-4817.

[19] Kozlova E A, Kurenkova A Y, Semeykina V S, et al. Effect oftitania regular macroporosity on the photocatalytic hydrogen evolution on Cd1-xZnxS/TiO2 catalysts under visible light[J]. ChemCatChem, 2015, 7(24): 4108-4117.

[20] Chatterjee S. Indian Institute of Engineering Science and Technology India, Sarkar J, et al. Effect of anodizing medium on the morphology and photoluminescent property of porous alumina film[J]. GSTF Journal of Engineering Technology, 2017, 4(2): 59-62.

[21] Ismail A K, Ibrahim N H, Shamsuddin K A, et al. A practical approach in porous medium combustion for domestic application:a review[J]. IOP Conference Series: Materials Science and Engineering, 2018, 370: 012004.

[22] Kim Y M. RheeG H, Ko C H, et al. Catalytic pyrolysis of Korean pine (pinus koraiensis) nut shell over mesoporous Al2O3[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(2): 1351-1355.

[23] Guarnera S. AbateA, Zhang W, et al. Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer-layer[J]. Journal of Physical Chemistry Letters, 2015, 6(3): 432-437.

[24] Zhang J, Yue D, Xia T F, et al. A luminescent metal-organic framework film fabricated on porous Al2O3 substrate for sensitive detecting ammonia[J]. Microporous and Mesoporous Materials, 2017, 253: 146-150.

[25] Guo H S, Li W F. Effects of Al2O3 crystal types on morphologies, formation mechanisms of mullite and properties of porous mullite ceramics based on kyanite[J]. Journal of the European Ceramic Society, 2018, 38(2): 679-686.

[26] Rose V. 105(7): 07C902[J]. Franchy R. The band gap of ultrathin amorphous, well-ordered Al2O3 films on CoAl, 100, measured by scanning tunneling spectroscopy. Journal of Applied Physics, 2009.

[27] 白忠臣, 黄兆岭, 郝礼才, 等. 近场显微成像法识别高功率激光镜片薄膜内部缺陷[J]. 中国激光, 2017, 44(1): 0103001.

    Bai Z C, Huang Z L, Hao L C, et al. Identifying defects in thin film of high power laser lens by using near field microimaging method[J]. Chinese Journal of Lasers, 2017, 44(1): 0103001.

[28] Bai Z C, Peng M, Zhang Z P, et al. Enhanced and broadened fluorescence of ZnSe quantum dots enabled by the fluorescence energy transfer system of ZnSe quantum dots and gold nanoparticles[J]. Applied Optics, 2018, 57(28): 8437-8442.

[29] Murai S, Fujita K, Daido Y, et al. Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films[J]. Optics Express, 2016, 24(2): 1143-1153.

[30] Naik G V, Schroeder J, Ni XJ, et al. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths[J]. Optical Materials Express, 2012, 3(10): 1658-1659.

[31] Zgrabik C M, Hu E L. Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications[J]. Optical Materials Express, 2015, 5(12): 2786-2797.

[32] Jaramillo-Quintero O A, Triana M A, Rincon M E. Optimization of charge transfer and transport processes at the CdSe quantum dots/TiO2 nanorod interface by TiO2 interlayer passivation[J]. Journal of Physics D: Applied Physics, 2017, 50(23): 235305.

[33] Naldoni A, Guler U, Wang Z X, et al. Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride[J]. Advanced Optical Materials, 2017, 5(15): 1601031.

[34] 赵宇, 宋振明, 金剑波, 等. 激光选区熔化成形Ti-5%TiN复合材料在Hank溶液中的电化学腐蚀性能[J]. 中国激光, 2019, 46(9): 0902005.

    Zhao Y, Song Z M, Jin J B, et al. Electrochemical corrosion properties of Ti-5%TiN composites formed by selective laser melting in hank's solution[J]. Chinese Journal of Lasers, 2019, 46(9): 0902005.

[35] Avasarala B, Haldar P. Durability and degradation mechanism of titanium nitride based electrocatalysts for PEM (proton exchange membrane) fuel cell applications[J]. Energy, 2013, 57: 545-553.

[36] Gao L, Gstöttner J, Emling R, et al. Thermal stability of titanium nitride diffusion barrier films for advanced silver interconnects[J]. Microelectronic Engineering, 2004, 76(1/2/3/4): 76-81.

[37] EndresR, KraussT, WesselyF, et al.Damascene metal gate technology for damage-free gate-last high-k process integration[C]∥2009 3rd International Conference on Signals. 6-8 Nov. 2009, Medenine, Tunisia.New York: IEEE Press, 2009: 1- 3.

[38] Hao L, Bai Z, Qin S, et al. The effect of differential temperatures on the latent heat in the nucleation of CdSe quantum dots[J]. Journal of Semiconductors, 2017, 38(4): 042004.

[39] Bai Z C, Hao L C, Zhang Z P, et al. Measuring photoluminescence spectra of self-assembly array nanowire of colloidal CdSe quantum dots using scanning near-field optics microscopy[J]. Functional Materials Letters, 2016, 09(3): 1650040.

[40] Guo Y, He X, Liu X, et al. One-step implementation of plasmon enhancement and solvent annealing effects for air-processed high-efficiency perovskite solar cells[J]. Journal of Materials Chemistry, 2018, 6(47): 24036-24044.

刘鹏程, 昌梦雨, 白忠臣, 秦水介. TiN纳米粒子增强CdSe/Al2O3异质结荧光的研究[J]. 中国激光, 2020, 47(9): 0913001. Liu Pengcheng, Chang Mengyu, Bai Zhongchen, Qin Shuijie. Enhanced Fluorescence of CdSe/Al2O3 Heterojunctions Enabled by TiN Nanoparticles[J]. Chinese Journal of Lasers, 2020, 47(9): 0913001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!